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Abstract

In this paper we develop accelerated first-order methods for convex optimization with locally Lipschitz
continuous gradient (LLCG), which is beyond the well-studied class of convex optimization with Lipschitz
continuous gradient. In particular, we first consider unconstrained convex optimization with LLCG and propose
accelerated proximal gradient (APG) methods for solving it. The proposed APG methods are equipped with a
verifiable termination criterion and enjoy an operation complexity of O(ε−1/2 log ε−1) and O(log ε−1) for finding
an ε-residual solution of an unconstrained convex and strongly convex optimization problem, respectively. We
then consider constrained convex optimization with LLCG and propose an first-order proximal augmented
Lagrangian method for solving it by applying one of our proposed APG methods to approximately solve a
sequence of proximal augmented Lagrangian subproblems. The resulting method is equipped with a verifiable
termination criterion and enjoys an operation complexity of O(ε−1 log ε−1) and O(ε−1/2 log ε−1) for finding
an ε-KKT solution of a constrained convex and strongly convex optimization problem, respectively. All the
proposed methods in this paper are parameter-free or almost parameter-free except that the knowledge on
convexity parameter is required. In addition, preliminary numerical results are presented to demonstrate the
performance of our proposed methods. To the best of our knowledge, no prior studies were conducted to
investigate accelerated first-order methods with complexity guarantees for convex optimization with LLCG. All
the complexity results obtained in this paper are entirely new.

Keywords: Convex optimization, locally Lipschitz continuous gradient, proximal gradient method, proximal
augmented Lagrangian method, accelerated first-order methods, iteration complexity, operation complexity
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1 Introduction

In this paper we first consider unconstrained convex optimization1

F ∗ = min
x
{F (x) := f(x) + P (x)}, (1)

where F ∗ ∈ R, f, P : Rn → (−∞,∞] are proper closed convex functions, f is differentiable on cl(dom(P )), and ∇f
is locally Lipschitz continuous2 on cl(dom(P )), where dom(P ) denotes the domain of P and cl(dom(P )) denotes
its closure. It shall be mentioned that dom(P ) is possibly unbounded. Problem (1) is beyond the well-studied
class of problems in the form of (1) yet with ∇f being (globally) Lipschitz continuous on cl(dom(P )) or Rn. For
example, the problem of minimizing a convex high-degree polynomial function over a closed unbounded convex
set is a special case of (1), but it does not belong to the latter class in general. In addition, it is sometimes
easier to verify local Lipschitz continuity than Lipschitz continuity of ∇f on cl(dom(P )). For example, when f is
twice differentiable in an open set containing cl(dom(P )), it is straightforward to see that ∇f is locally Lipschitz
continuous on cl(dom(P )); however, verifying Lipschitz continuity of ∇f may require exploring the expression of
∇f and can be a nontrivial task.

The well-known special case of problem (1) with ∇f being Lipschitz continuous on cl(dom(P )) or Rn has
been extensively studied in the literature. In particular, accelerated proximal gradient (APG) methods [3, 16] and

∗Department of Industrial and Systems Engineering, University of Minnesota, USA (email: zhaosong@umn.edu, mei00035@umn.edu).
1We refer to problem (1) as an unconstrained optimization problem just for convenience. Strictly speaking, it can be a constrained

optimization problem. For example, when P is the indicator function of a closed convex set, it reduces to the problem of minimizing
f over this set.

2See Subsection 1.1 for the definition of locally Lipschitz continuity.
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their variants [4, 9, 20] were proposed for solving it. From theoretical perspective, these methods enjoy an optimal
iteration complexity of O(ε−1/2) for finding an ε-gap solution of (1), namely, a point x satisfying F (x)− F ∗ ≤ ε.
However, since F ∗ is typically unknown, there is a lack of a verifiable termination criterion for them to find an
ε-gap solution of (1) in general. To overcome this issue, a nearly optimal proximal gradient method was recently
proposed in [6] for solving such a special case of (1). This method is equipped with a verifiable termination
criterion based on the norm of a gradient mapping of (1) and enjoys an iteration complexity of O(ε−1/2 log ε−1)
for finding an ε-norm solution of (1), namely, a point at which the norm of a gradient mapping of (1) is no more
than ε. It shall be mentioned that these methods [3, 4, 6, 9, 16, 20] and their analysis rely on the Lipschitz
continuity of ∇f on cl(dom(P )) or Rn. Indeed, they require either an explicitly known global Lipschitz constant
of ∇f [4, 9, 20] or an estimated one obtained by a backtracking line search scheme [3, 6, 16]. When ∇f is merely
locally Lipschitz continuous, a global Lipschitz constant of ∇f clearly does not exist and also the sequence of
estimated Lipschitz constants in [3, 6, 16] can blow up because the solution sequence is possibly unbounded. If
the latter case occurs, the methods may not converge and the complexity analysis of the methods in [3, 6, 16]
will no longer hold. As a result, these methods are not applicable to (1) or lack complexity guarantees in general
when ∇f is merely locally Lipschitz continuous on cl(dom(P )).

To handle the challenge of the local Lipschitz continuity of ∇f , we modify [9, Algorithm 1 with a single
block] by incorporating a backtracking line search scheme and an adaptive update strategy on the algorithm
parameters to propose an APG method (see Algorithm 1) for solving problem (1). Interestingly, the solution
sequence and the sequence of estimated (local) Lipschitz constants obtained by the proposed APG method can
be proved to be bounded, which overcome the aforementioned issues of the methods in [3, 6, 16]. Moreover, this
method is shown to enjoy a nice iteration complexity of O(ε−1/2) and O(log ε−1) for finding an ε-gap solution of
(1) when f is convex and strongly convex, respectively. Yet, since F ∗ is typically unknown, it is difficult to come
up with a verifiable termination criterion for this method to find an ε-gap solution of (1). To circumvent this
issue, we further propose an APG method with a verifiable termination criterion (see Algorithm 2) for (1) with a
strongly convex f , and show that it enjoys an iteration and operation complexity3 of O(log ε−1) for finding an
ε-residual solution of (1), namely, a point x satisfying dist(0, ∂F (x)) ≤ ε.4 We also propose an APG method
with a verifiable termination criterion (see Algorithm 4) for (1) with a convex but non-strongly convex f by
applying Algorithm 2 to a sequence of strongly convex optimization problems arising from a perturbation of (1),
and show that it enjoys an operation complexity of O(ε−1/2 log ε−1) for finding an ε-residual solution of (1). All
the proposed APG methods are parameter-free or almost parameter-free except that the knowledge on convexity
parameter of f is required.

Secondly, we consider constrained convex optimization in the form of

F̄ ∗ = min {F (x) := f(x) + P (x)}
s.t. −g(x) ∈ K, (2)

where K ⊆ Rm is a closed convex cone, f, P : Rn → (−∞,∞] are proper closed convex functions, f and g are
differentiable on cl(dom(P )), ∇f and ∇g are locally Lipschitz continuous on cl(dom(P )), and g is K-convex, that
is,

αg(x) + (1− α)g(y)− g(αx+ (1− α)y) ∈ K, ∀x, y ∈ Rn, α ∈ [0, 1].

It shall be mentioned that dom(P ) is possibly unbounded.
Problem (2) includes a rich class of problems as a special case. For example, when K = Rm1

+ × {0}m2 for
some m1 and m2, g(x) = (g1(x), . . . , gm1(x), h1(x), . . . , hm2(x))T with convex gi’s and affine hj ’s, and P (x) is
the indicator function of a simple convex set X ⊆ Rn, problem (2) reduces to an ordinary convex optimization
problem

min
x∈X
{f(x) : gi(x) ≤ 0, i = 1, . . . ,m1;hj(x) = 0, j = 1, . . . ,m2}.

Numerous first-order methods were developed for solving some special cases of (2) in the literature. For
example, a variant of Tseng’s modified forward-backward splitting method was proposed in [14] for (2) with g
being an affine map, K = {0}m, and ∇f being Lipschitz continuous on cl(dom(P )). Also, first-order penalty
methods were proposed in [7] for (2) with g being an affine map, P being the indicator function of a simple

3The operation complexity of a proximal gradient method for problem (1) is measured by the amount of its fundamental operations
consisting of evaluations of ∇f and proximal operator of P .

4dist(z,Ω) = miny{‖z − y‖ : y ∈ Ω} for any z ∈ Rn and closed set Ω ⊆ Rn. In addition, an ε-residual solution x of (1) satisfying
‖x‖ ≤ ∆ for some ∆ > 0 independent on ε is an O(ε)-gap solution, because F (x)− F ∗ ≤ ‖x− x∗‖dist(0, ∂F (x)) ≤ (∆ + ‖x∗‖)ε for
any optimal solution x∗ of (1). However, the converse may not be true.
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compact convex set, and ∇f being Lipschitz continuous on this set. In addition, first-order augmented Lagrangian
(AL) methods were developed in [1, 15] for (2) with g being an affine map, P having a bounded domain or being
the indicator function of a simple compact convex set, and ∇f being Lipschitz continuous on Rn. Also, first-order
AL methods were proposed in [8, 10, 17] with K = {0}m, g being an affine map, P having bounded domain or
being the indicator function of a simple compact convex set, and ∇f being Lipschitz continuous on this set or
Rn. For these special cases, first-order iteration complexity was established for the methods [1, 15, 17] for finding
an ε-gap solution5 of (2) and for the methods [7, 8, 14] for finding an ε-KKT type solution, which is similar to
the one introduced in Definition 2 in Section 3. Since F ∗ is typically unknown, there is a lack of a verifiable
termination criterion for the methods [1, 15, 17] to find an ε-gap solution of (2) in general. In contrast, ε-KKT
type of solutions can generally be verified and the methods [7, 8, 14] are equipped with a usually verifiable
termination criterion for finding an ε-KKT type solution of the aforementioned special cases of (2).

In addition to the above methods, a first-order proximal AL method was recently proposed in [12, Algorithm
2] for solving a special case of problem (2) with P having a compact domain and ∇f and ∇g being Lipschitz
continuous on dom(P ). At each iteration, this method applies a variant of Nesterov’s optimal first-order method
[12, Algorithm 3] to approximately solve a proximal AL subproblem and then updates the Lagrangian multiplier
by a classical scheme. This method enjoys two nice features: (i) it is equipped with a verifiable termination
criterion; (ii) it achieves a best-known operation complexity of O(ε−1 log ε−1) for finding an ε-KKT solution6 of
such a special case of (2).

It shall be mentioned that the aforementioned methods in [1, 7, 8, 10, 12, 14, 15, 17] and their analysis
rely on boundedness of dom(P ) and/or Lipschitz continuity of ∇f and ∇g on cl(dom(P )) or Rn. Indeed, these
methods use the APG method [16] or its variant as a subproblem solver. Based on the above discussion, such a
subproblem solver is not applicable or lacks complexity guarantees in general when dom(P ) is unbounded or ∇f
and ∇g are merely locally Lipschitz continuous on cl(dom(P )), because the gradient of the smooth component in
the objective function of the subproblems is merely locally Lipschitz continuous. As a result, these methods are
not applicable or lack complexity guarantees in general when dom(P ) is unbounded or ∇f and ∇g are merely
locally Lipschitz continuous on cl(dom(P )).

In this paper we propose a first-order proximal AL method for solving problem (2) by following the same
framework as [12, Algorithm 2] except that the proximal AL subproblems are approximately solved by our APG
method, namely, Algorithm 2. Though the gradient of the smooth component in the objective function of these
subproblems is merely locally Lipschitz continuous, their approximate solutions can be found by our APG method
with complexity guarantees. As a result, our first-order proximal AL method overcomes the aforementioned issue
faced by the methods in [1, 7, 8, 10, 12, 14, 15, 17]. Besides, our method is equipped with a verifiable termination
criterion and almost parameter-free except that the knowledge on convexity parameter of f is required. Moreover,
we show that it achieves an operation complexity of O(ε−1 log ε−1) and O(ε−1/2 log ε−1) for finding an ε-KKT
solution of (2) when f is convex and strongly convex, respectively.

The main contributions of our paper are summarized as follows.

• We propose and analyze APG methods for solving problem (1) under local Lipschitz continuity of ∇f on
cl(dom(P )) for the first time. Our proposed methods are almost parameter-free, equipped with a verifiable
termination criterion, and enjoy an operation complexity of O(ε−1/2 log ε−1) and O(log ε−1) for finding an
ε-residual solution of (1) when f is convex and strongly convex, respectively.

• We propose and analyze a first-order proximal AL method for solving problem (2) under local Lipschitz
continuity of ∇f and ∇g on cl(dom(P )) and possible unboundedness of dom(P ) for the first time. Our
proposed method is almost parameter-free, equipped with a verifiable termination criterion, and enjoys an
operation complexity of O(ε−1 log ε−1) and O(ε−1/2 log ε−1) for finding an ε-KKT solution of (2) when f
is convex and strongly convex, respectively.

The rest of this paper is organized as follows. In Subsection 1.1 we introduce some notation and terminology.
In Section 2 we propose accelerated proximal gradient methods for problem (1) and study their worst-case
complexity. In Section 3 we propose a first-order proximal augmented Lagrangian method for problem (2) and
study its worst-case complexity. In addition, we present some preliminary numerical results and the proofs of the
main results in Sections 4 and 5. Finally, we make some concluding remarks in Section 6.

5An ε-gap solution of problem (2) is a point x satisfying |F (x)− F̄ ∗| ≤ ε and dist(g(x),−K) ≤ ε.
6An ε-KKT solution of (2) is generally an O(ε)-gap solution of (2) (see Theorems 3 and 6 of [12]). However, the converse may not

be true.
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1.1 Notation and terminology

The following notation will be used throughout this paper. Let Rn denote the Euclidean space of dimension n,
〈·, ·〉 denote the standard inner product, and ‖ · ‖ stand for the Euclidean norm or its induced matrix norm. For
any ω ∈ R, let ω+ = max{ω, 0} and dωe denote the least integer number greater than or equal to ω. Let Z+

denote the set of positive integers. For any t,M ∈ Z+, mod(t,M) denotes the remainder of t when divided by M .
For a closed convex function P : Rn → (−∞,∞], let ∂P and dom(P ) denote the subdifferential and domain

of P , respectively. The proximal operator associated with P is denoted by proxP , that is,

proxP (z) = arg min
x∈Rn

{
1

2
‖x− z‖2 + P (x)

}
∀z ∈ Rn.

Since evaluation of proxγP (z) is often as cheap as that of proxP (z), we count evaluation of proxγP (z) as one

evaluation of proximal operator of P for any γ > 0 and z ∈ Rn. For a mapping h : Rn → Rl, ∇h denotes the
transpose of the Jacobian of h. ∇h is called L-Lipschitz continuous on a set Ω for some constant L > 0 if
‖∇h(x)−∇h(y)‖ ≤ L‖x− y‖ for all x, y ∈ Ω. In addition, ∇h is called locally Lipschitz continuous on Ω if for
any x ∈ Ω, there exist Lx > 0 and an open set Ux containing x such that ∇h is Lx-Lipschitz continuous on Ux.

Given a nonempty closed convex set Ω ⊆ Rn, dist(x,Ω) stands for the Euclidean distance from x to Ω, and
ΠΩ(x) denotes the Euclidean projection of x onto C. The normal cone of Ω at any x ∈ Ω is denoted byNΩ(x). For a
closed convex cone K ⊆ Rm, we use K∗ to denote the dual cone of K, that is, K∗ = {y ∈ Rm : 〈y, x〉 ≥ 0, ∀x ∈ K}.

2 Accelerated proximal gradient methods for unconstrained convex opti-
mization

In this section we consider problem (1) and propose accelerated proximal gradient (APG) methods for solving it.
In particular, we aim to find an ε-residual solution of (1), which is defined below.

Definition 1. Given any ε > 0, we say x ∈ Rn is an ε-residual solution of problem (1) if it satisfies
dist(0, ∂F (x)) ≤ ε.

To proceed, let µ ≥ 0 denote the convexity parameter of f on dom(P ), that is,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖2, ∀x ∈ dom(P ), y ∈ Rn. (3)

Clearly, f is strongly convex on dom(P ) when µ > 0. In addition, we assume that the proximal operator
associated with P can be exactly evaluated and problem (1) has at least one optimal solution. Let x∗ be an
arbitrary optimal solution of (1) and fixed throughout this section.

2.1 An APG method without a termination criterion for problem (1)

We propose an APG method for (1) as follows, which is a modification of [9, Algorithm 1 with a single block] by
incorporating a backtracking line search scheme and an adaptive update strategy on the algorithm parameters.
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Algorithm 1 An APG method without a termination criterion for problem (1)

Input: γ0 ∈ (0, 1/µ],7 0 < α0 ∈ [
√
µγ0, 1], δ ∈ (0, 1), and x1 = z1 ∈ dom(P ).

1: for t = 1, 2, . . . do
2: Compute

yt =
(
(1− αt)xt + αt(1− βt)zt

)
/(1− αtβt), (4)

zt+1 = arg min
x

{
γt[〈∇f(yt), x〉+ P (x)] +

αt
2
‖x− βtyt − (1− βt)zt‖2

}
, (5)

xt+1 = (1− αt)xt + αtz
t+1, (6)

where γt = γ0δ
nt and βt = µγtα

−1
t with αt ∈ (0, 1] being the solution of

γt−1α
2
t = (1− αt)α2

t−1γt + µαtγtγt−1, (7)

and nt being the smallest non-negative integer such that

2γt
(
f(xt+1)− f(yt)− 〈∇f(yt), xt+1 − yt〉

)
≤ ‖xt+1 − yt‖2. (8)

3: end for

Remark 1. (i) Algorithm 1 is almost parameter-free except that the convexity parameter µ of f is required.
(ii) One can observe that the fundamental operations of Algorithm 1 consist of evaluations of ∇f and proximal

operator of P . Specifically, at iteration t, Algorithm 1 requires nt + 1 evaluations of ∇f and proximal operator of
P for finding xt+1 satisfying (8).

(iii) Notice from Algorithm 1 that 0 < α0 ∈ [
√
µγ0, 1], which implies α0 ∈ (0, 1] regardless of µ = 0 or µ > 0.

Suppose that αt−1 ∈ (0, 1] and γt−1, γt ∈ (0, γ0] are given for some t ≥ 1. Then αt ∈ (0, 1] is well defined by
the equation (7). Indeed, let φ(α) = γt−1α

2 − (1− α)α2
t−1γt − µαγtγt−1. Observe that φ(0) = −α2

t−1γt < 0 and
φ(1) = γt−1(1 − µγt) ≥ γt−1(1 − µγ0) ≥ 0 due to γ0 ∈ (0, 1/µ]. Hence, (7) has a solution in (0, 1] and αt is
well-defined.

We next study well-definedness of Algorithm 1 and also its convergence rate in terms of F (xt)− F (x∗). To
proceed, we define

r0 =

√
F (x1)− F (x∗) +

α2
0

2γ0
‖x1 − x∗‖2, S =

{
x ∈ dom(P ) : ‖x− x∗‖ ≤

√
2γ0r0

α0

}
. (9)

The following lemma establishes that ∇f is Lipschitz continuous on S and also on an enlarged set induced
by α0, γ0, r0, x∗, f and S, albeit ∇f is locally Lipschitz continuous on cl(dom(P )). This result will play an
important role in this section.

Lemma 1. Let r0 and S be defined in (9), and let γ0 and α0 be the input parameters of Algorithm 1. Then the
following statements hold.

(i) ∇f is LS-Lipschitz continuous on S for some constant LS > 0.

(ii) ∇f is LŜ-Lipschitz continuous on Ŝ for some constant LŜ > 0, where

Ŝ =

{
x ∈ dom(P ) : ‖x− x∗‖ ≤ (1 + γ0LS)

√
2γ0r0

α0

}
. (10)

Proof. Notice that S is a convex and bounded subset in dom(P ). By this and the local Lipschitz continuity of
∇f on cl(dom(P )), it is not hard to observe that there exists some constant LS > 0 such that ∇f is LS -Lipschitz
continuous on S. Hence, statement (i) holds and moreover the set Ŝ is well-defined. By a similar argument, one
can see that statement (ii) also holds.

The following theorem shows that Algorithm 1 is well-defined at each iteration. Its proof is deferred to
Subsection 5.1.

7By convention, we define 1/0 =∞. Consequently, when µ = 0, γ0 can be any positive number.
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Theorem 1. Algorithm 1 is well-defined at each iteration. Moreover, xt, yt, zt ∈ S and nt ≤ N for all t ≥ 1,
where S is defined in (9) and

N =

⌈
log(γ0LŜ)

log(1/δ)

⌉
+

. (11)

The next theorem presents a result regarding convergence rate of Algorithm 1, whose proof is deferred to
Section 5.

Theorem 2. Let {xt} be generated by Algorithm 1. Then for all t ≥ 1, it holds that

F (xt)− F (x∗) ≤ min


(

1−
√
µmin

{
γ0, δL

−1

Ŝ

} )t−1

, 4

(
2 + (t− 1)α0

√
min

{
1, δγ−1

0 L−1

Ŝ

} )−2
 r2

0. (12)

Remark 2. (i) Despite only assuming local Lipschitz continuity of ∇f on cl(dom(P )), Algorithm 1 enjoys a
similar convergence rate as the optimal APG method [9, Algorithm 1 with a single block] which was proposed and
analyzed for solving a special case of problem (1) with ∇f being Lipschitz continuous on Rn.

(ii) An adaptive gradient method was recently proposed in [13, Algorithm 1] for solving a special case of
problem (1) with P ≡ 0. It is a variant of classical gradient methods without acceleration and enjoys a much
worse convergence rate than the one given in (12). In particular, when f is convex, it has a convergence rate of
O(1/t) (see [13, Theorem 1]).

From theoretical perspective, it follows from Theorem 2 that Algorithm 1 enjoys an iteration complexity of
O(ε−1/2) and O(log ε−1) for finding an ε-gap solution xt of (1) satisfying F (xt)− F ∗ ≤ ε when f is convex and
strongly convex, respectively. However, since F ∗, L−1

Ŝ
and r0 are typically unknown, it is difficult to come up

with a verifiable termination criterion for Algorithm 1 to find an ε-gap solution of (1). To circumvent this issue,
we propose some variants of Algorithm 1 with a verifiable termination criterion in the next two subsections.

2.2 An APG method with a termination criterion for problem (1) with µ > 0

In this subsection we propose an APG method with a verifiable termination criterion for finding an ε-residual
solution of problem (1) with µ > 0, namely, f being strongly convex on dom(P ). It is a slight variant of
Algorithm 1 by incorporating a termination criterion that is checked only periodically.

Algorithm 2 An APG method with a termination criterion for problem (1) with µ > 0

Input: ε > 0, γ0 ∈ (0, 1/µ], 0 < α0 ∈ [
√
µγ0, 1], δ ∈ (0, 1), M ∈ Z+, and x1 = z1 ∈ dom(P ).

1: for t = 1, 2, . . . do
2: Compute

yt =
(
(1− αt)xt + αt(1− βt)zt

)
/(1− αtβt),

zt+1 = arg min
x

{
γt[〈∇f(yt), x〉+ P (x)] +

αt
2
‖x− βtyt − (1− βt)zt‖2

}
,

xt+1 = (1− αt)xt + αtz
t+1,

where γt = γ0δ
nt and βt = µγtα

−1
t with αt ∈ (0, 1] being the solution of

γt−1α
2
t = (1− αt)α2

t−1γt + µαtγtγt−1,

and nt being the smallest non-negative integer such that

2γt
(
f(xt+1)− f(yt)− 〈∇f(yt), xt+1 − yt〉

)
≤ ‖xt+1 − yt‖2.

3: if mod(t,M) = 0 then
4: Call Algorithm 3 with (xt+1, γ0, δ) as the input and output (x̃t+1, γ̃t+1).
5: Terminate the algorithm and output x̃t+1 if

‖γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1)‖ ≤ ε. (13)

6: end if
7: end for
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Algorithm 3 Adaptive proximal gradient iteration

Input: v ∈ S and γ̃0, δ > 0.
1: Compute

ṽ = arg min
x

{
γ̃〈∇f(v), x〉+ γ̃P (x) +

1

2
‖x− v‖2

}
, (14)

where γ̃ = γ̃0δ
ñ with ñ being the smallest non-negative integer such that

2γ̃(f(ṽ)− f(v)− 〈∇f(v), ṽ − v〉) ≤ ‖ṽ − v‖2. (15)

2: Terminate the algorithm and output (ṽ, γ̃).

Remark 3. It is clear to see that Algorithm 2 is well-defined at each iteration and equipped with a verifiable
termination criterion. In addition, it is almost parameter-free except that the convexity parameter µ of f is
required.

The following theorem presents an iteration and operation complexity of Algorithm 2 for finding an ε-residual
solution of problem (1) with a strongly convex f on dom(P ), whose proof is deferred to Subsection 5.2.

Theorem 3. Suppose that µ > 0, i.e., f is strongly convex on dom(P ). Let ε, M , δ, α0 and γ0 be the input
parameters of Algorithm 2, r0 and LŜ be given in (9) and Lemma 1 respectively, and let

T = M +


2 log ε

r0

(√
2 max{γ−1

0 ,LŜδ
−1}+

√
2γ0LŜ

)

log

(
1−

√
µmin

{
γ0, δL

−1

Ŝ

})


+

, (16)

N̄ = (1 +M−1)

M +


2 log ε

r0

(√
2 max{γ−1

0 ,LŜδ
−1}+

√
2γ0LŜ

)

log

(
1−

√
µmin

{
γ0, δL

−1

Ŝ

})


+


(

1 +

⌈
log(γ0LŜ)

log(1/δ)

⌉
+

)
. (17)

Then Algorithm 2 terminates and outputs an ε-residual solution of problem (1) in at most T iterations. Moreover,
the total number of evaluations of ∇f and proximal operator of P performed in Algorithm 2 is no more than N̄ ,
respectively.

Remark 4. It can be seen from Theorem 3 that Algorithm 2 enjoys an operation complexity of O(log ε−1) for
finding an ε-residual solution of problem (1) with a strongly convex f on dom(P ).

2.3 An APG method with a termination criterion for problem (1) with µ = 0

In this subsection we propose an APG method with a verifiable termination criterion for finding an ε-residual
solution of problem (1) with µ = 0, namely, f being convex but not strongly convex on dom(P ). In particular,
the proposed APG method applies Algorithm 2 to a sequence of strongly convex optimization problems arising
from a perturbation of problem (1).
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Algorithm 4 An APG method with a termination criterion for problem (1) with µ = 0

Input: ε > 0, x0 ∈ dom(P ), M ∈ Z+, 0 < δ < 1, ρ0 > 1, 0 < γ0 ≤ ρ0, α0 ∈ [
√
γ0/ρ0, 1], 0 < η0 ≤ 1, ζ > 1,

0 < σ < 1/ζ, ρk = ρ0ζ
k, ηk = η0σ

k for all k ≥ 0.
1: for k = 0, 1, . . . do
2: Call Algorithm 2 with F ← Fk, f ← fk, ε ← ηk, µ ← ρ−1

k , x1 = z1 ← xk and the parameters α0, γ0, δ
and M , and denote its output by xk+1, where

fk(x) = f(x) +
1

2ρk
‖x− xk‖2, Fk(x) = fk(x) + P (x). (18)

3: Terminate the algorithm and output xk+1 if

1

ρk
‖xk+1 − xk‖ ≤ ε

2
, ηk ≤

ε

2
. (19)

4: end for

Remark 5. Algorithm 4 is parameter-free and equipped with a verifiable termination criterion. In addition, by
the monotonicity of {ρk}, one has

0 < γ0 ≤ ρ0 ≤ ρk,
√
ρ−1
k γ0 ≤

√
ρ−1

0 γ0 ≤ α0 ≤ 1.

Consequently, the choice of α0 and γ0 in Algorithm 4 satisfies the requirements specified in Algorithm 2. It then
follows from Theorem 3 that at the kth outer iteration of Algorithm 4, xk+1 must be successfully generated by
Algorithm 2, which is an ηk-residual solution of the problem minx{Fk(x) = fk(x) + P (x)}. Thus, it holds that

dist(0, ∂Fk(x
k+1)) ≤ ηk. (20)

We next study iteration and operation complexity of Algorithm 4 for finding an ε-residual solution of problem
(1) with f being convex but not strongly convex on dom(P ). Before proceeding, we introduce some notation that
will be used subsequently. We define

r0 = ‖x0 − x∗‖, θ =

∞∑
i=0

ρiηi =
ρ0η0

1− σζ
, (21)

r̃0 = max

{√
2γ0α

−2
0 (F (x0)− F (x∗)) + r2

0,
√

2γ0α
−2
0 (r0 + θ)

(
η0 + ρ−1

0 (r0 + θ)
)

+ (r0 + θ)2

}
. (22)

Also, we define
Q = {x ∈ dom(P ) : ‖x− x∗‖ ≤ r̃0 + r0 + θ} . (23)

Let L∇f be the Lipschitz constant of ∇f on Q and

L = L∇f + ρ−1
0 , Q̂ = {x ∈ dom(P ) : ‖x− x∗‖ ≤ (1 + γ0L)r̃0 + r0 + θ} , L̂ = L̂∇f + ρ−1

0 , (24)

where L̂∇f is the Lipschitz constant of ∇f on Q̂. By the local Lipschitz continuity of ∇f on cl(dom(P )) and

a similar argument as in the proof of Lemma 1, one can easily observe that L, L̂, L∇f , L̂∇f , Q, and Q̂ are
well-defined.

The following theorem presents an iteration and operation complexity of Algorithm 4 for finding an ε-residual
solution of problem (1) with f being convex but not strongly convex on dom(P ), namely, a point x satisfying
dist(0, ∂F (x)) ≤ ε, whose proof is deferred to Subsection 5.3.

Theorem 4. Suppose that µ = 0, i.e., f is convex but not strongly convex on dom(P ). Let ε, M , δ, ρ0, α0,
γ0, η0, ζ and σ be the input parameters of Algorithm 5, and let r0, θ, r̃0 and L̂ be given in (21), (22) and (24),
respectively. Define

C̃1 = (1 +M−1)

(
1 +

⌈
log(γ0L̂)

log(1/δ)

⌉
+

)
, (25)

C̃2 =

√
ρ0ζC̃1

log
α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η20


+

(
√
ζ − 1) min

{√
γ0,
√
δL̂−1

} , C̃3 =
2
√
ρ0ζC̃1 log(1/σ)

(
√
ζ − 1) min

{√
γ0,
√
δL̂−1

} . (26)
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Then the following statements hold.

(i) Algorithm 4 outputs an ε-residual solution of problem (1) after at most K + 1 outer iterations, where

K =

⌈
max

{
log

(
2r0 + 2θ

ρ0ε

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

. (27)

(ii) The total number of evaluations of ∇f and proximal operator of P performed in Algorithm 4 is no more
than Ñ , respectively, where

Ñ = (M + 1)C̃1 + (M + 1)C̃1

⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

+ C̃2 max

{√
2ζ(r0 + θ)

ερ0
,
√
ζ

(
2η0

ε

) log ζ
2 log(1/σ)

, 1

}

+ C̃3

⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

max

{√
2ζ(r0 + θ)

ερ0
,
√
ζ

(
2η0

ε

) log ζ
2 log(1/σ)

, 1

}
.

(28)

Remark 6. Since 1 < ζ < 1/σ, it can be seen from Theorem 4 that Algorithm 4 enjoys an operation complexity
of O(ε−1/2 log ε−1) for finding an ε-residual solution of problem (1) with f being convex but not strongly convex
on dom(P ).

3 A first-order proximal augmented Lagrangian method for constrained
convex optimization

In this section we consider problem (2) and propose a first-order proximal augmented Lagrangian (AL) method
for solving it. Let µ ≥ 0 denote the convexity parameter of f on dom(P ), that is, (3) holds for f and µ. Before
proceeding, we make the following additional assumptions for problem (2).

Assumption 1. (a) The proximal operator associated with P and the projection onto K∗ can be exactly
evaluated.

(b) Both problem (2) and its Lagrangian dual problem

sup
λ∈K∗

inf
x
{f(x) + P (x) + 〈λ, g(x)〉} (29)

have optimal solutions, and moreover, they share the same optimal value.

Under the assumptions on problem (2), it can be observed that (x, λ) is a pair of optimal solutions of (2) and
(29) if and only if it satisfies the Karush-Kuhn-Tucker (KKT) condition

0 ∈
(
∇f(x) +∇g(x)λ+ ∂P (x)

−g(x) +NK∗(λ)

)
.

In general, it is difficult to find an exact optimal solution of (2) and (29). Instead, for any given ε > 0, we are
interested in finding an ε-KKT solution (x, λ) of problems (2) and (29) that is defined below.

Definition 2. Given any ε > 0, we say (x, λ) ∈ Rn × Rm is an ε-KKT solution of problems (2) and (29) if

dist(0,∇f(x) + ∂P (x) +∇g(x)λ) ≤ ε, dist(g(x),NK∗(λ)) ≤ ε.

We next propose a first-order proximal AL method with a verifiable termination criterion for solving problem
(2), which follows the same framework as [12, Algorithm 2] except that the proximal AL subproblems are
approximately solved by our newly proposed APG method, namely, Algorithm 2. Specifically, at the kth iteration,
our method applies Algorithm 2 to approximately solve the proximal AL subproblem

min
x
L(x, λk; ρk) +

1

2ρk
‖x− xk‖2

9



for some λk ∈ K∗ and ρk > 0, where L is the AL function associated with problem (2) defined as

L(x, λ; ρ) = f(x) + P (x) +
1

2ρ

(
dist2 (λ+ ρg(x),−K)− ‖λ‖2

)
. (30)

Algorithm 5 A first-order proximal augmented Lagrangian method for problem (2)

Input: ε > 0, (x0, λ0) ∈ dom(P )× K∗, M ∈ Z+, 0 < δ < 1, ρ0 > (µ+
√
µ2 + 4)/2, α0 ∈ [

√
(µ+ 1/ρ0)/ρ0, 1],

0 < η0 ≤ 1, ζ > 1, 0 < σ < 1/ζ, ρk = ρ0ζ
k, ηk = η0σ

k for all k ≥ 0.
1: for k = 0, 1, . . . do
2: Call Algorithm 2 with F ← Fk, f ← fk, ε← ηk, γ0 ← ρ−1

k , µ← µ+ρ−1
k , x1 = z1 ← xk and the parameters

α0, δ and M , and denote its output by xk+1, where

fk(x) = f(x) +
1

2ρk

(
dist2

(
λk + ρkg(x),−K

)
− ‖λk‖2 + ‖x− xk‖2

)
, Fk(x) = fk(x) + P (x). (31)

3: Set λk+1 = ΠK∗
(
λk + ρkg(xk+1)

)
.

4: Terminate the algorithm and output (xk+1, λk+1) if

1

ρk
‖(xk+1, λk+1)− (xk, λk)‖ ≤ ε

2
, ηk ≤

ε

2
. (32)

5: end for

Remark 7. (i) Algorithm 5 is equipped with a verifiable termination criterion and almost parameter-free except
that the convexity parameter µ of f is required.

(ii) Since ρ0 > (µ+
√
µ2 + 4)/2, it follows that ρ−1

0 < 1/(µ+ ρ−1
0 ). By this, α0 ∈ [

√
(µ+ 1/ρ0)/ρ0, 1], and

the monotonicity of {ρk}, one has

0 < ρ−1
k ≤ ρ

−1
0 <

1

µ+ ρ−1
0

≤ 1

µ+ ρ−1
k

,
√

(µ+ ρ−1
k )ρ−1

k ≤
√

(µ+ ρ−1
0 )ρ−1

0 ≤ α0 ≤ 1.

Consequently, the choice of α0 and γ0 in Algorithm 5 satisfies the requirements specified in Algorithm 2. It then
follows from Theorem 3 that at the kth outer iteration of Algorithm 5, xk+1 must be successfully generated by
Algorithm 2, which is an ηk-residual solution of the problem minx{Fk(x) = fk(x) + P (x)}. Thus, it holds that

dist(0, ∂Fk(x
k+1)) ≤ ηk. (33)

We next study iteration and operation complexity of Algorithm 5 for finding an ε-KKT solution of problems
(2) and (29). Before proceeding, we introduce some notation that will be used subsequently.

Let (x∗, λ∗) be an arbitrary pair of optimal solutions of problems (2) and (29) and fixed throughout this
section. We define

r0 = ‖(x0, λ0)− (x∗, λ∗)‖, θ =

∞∑
i=0

ρiηi =
ρ0η0

1− σζ
, Q̃ = {x ∈ dom(P ) : ‖x− x∗‖ ≤ r0 + θ} . (34)

Let L̃g be the Lipschitz constant of g on Q̃ and

r̃0 = max

{√
2ρ−1

0 α−2
0 (F (x0)− F (x∗)) + ρ−2

0 α−2
0 (‖ΠK∗(λ0 + ρ0g(x0))‖2 + ‖λ0 − λ∗‖2 − ‖λ0‖2) + r2

0,√
2ρ−1

0 α−2
0 (r0 + θ)

(
η0 + ρ−1

0 (r0 + θ) + 2L̃g(ζ + 1)(‖λ∗‖+ r0 + θ) + ρ0α2
0(r0 + θ)

)}
. (35)

We define
Q = {x ∈ dom(P ) : ‖x− x∗‖ ≤ r̃0 + r0 + θ} . (36)

Let L∇f , L∇g and Lg be the Lipschitz constants of ∇f , ∇g and g on Q, respectively, and let

C = L∇g sup
x∈Q
‖g(x)‖+ L2

g, B = L∇f + L∇g(‖λ∗‖+
√

2r0), L = C + ρ−1
0 B + ρ−1

0 L∇gθ + ρ−2
0 . (37)
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We define
Q̂ = {x ∈ dom(P ) : ‖x− x∗‖ ≤ (1 + L)r̃0 + r0 + θ} . (38)

Let L̂∇f , L̂∇g and L̂g be the Lipschitz constants of ∇f , ∇g and g on Q̂, respectively, and let

Ĉ = L̂∇g sup
x∈Q̂
‖g(x)‖+ L̂2

g, B̂ = L̂∇f + L̂∇g(‖λ∗‖+
√

2r0), L̂ = Ĉ + ρ−1
0 B̂ + ρ−1

0 L̂∇gθ + ρ−2
0 . (39)

By the local Lipschitz continuity of ∇f and ∇g on cl(dom(P )) and a similar argument as in the proof of Lemma
1, one can easily observe that L̃g, L∇f , L∇g, Lg, L̂∇f , L̂∇g, L̂g, B, C, L, B̂, Ĉ, L̂, Q, and Q̂ are well-defined.

The following theorem presents an iteration and operation complexity of Algorithm 5 for finding an ε-KKT
solution of problems (2) and (29), whose proof is deferred to Subsection 5.4.

Theorem 5. Let ε, M , δ, ρ0, α0, η0, ζ and σ be the input parameters of Algorithm 5, and let r0, θ, r̃0 and L̂ be
given in (34), (35) and (39), respectively. Define

Ĉ1 = (1 +M−1)

(
1 +

⌈
log L̂

log(1/δ)

⌉
+

)
, (40)

Ĉ2 =

Ĉ1

(
log

ρ20α
2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η20

)
+

(
√
ζ − 1) min

{
1,
√
δL̂−1

} , Ĉ3 =
2Ĉ1 log(ζ/σ)

(
√
ζ − 1) min

{
1,
√
δL̂−1

} . (41)

Then the following statements hold.

(i) Algorithm 5 outputs an ε-KKT solution of problems (2) and (29) after at most K + 1 outer iterations,
where

K =

⌈
max

{
log

(
2r0 + 2θ

ρ0ε

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

. (42)

(ii) If µ = 0, i.e., f is convex but not strongly convex, the total number of evaluations of ∇f , ∇g, proximal
operator of P and projection onto K∗ performed in Algorithm 5 is no more than N̂ , respectively, where

N̂ = 1 + (M + 1)Ĉ1 +
(

1 + (M + 1)Ĉ1

)⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

+ Ĉ2ρ0ζ max

{
2ζ(r0 + θ)

ερ0
, ζ

(
2η0

ε

) log ζ
log(1/σ)

, 1

}

+ Ĉ3ρ0ζ

⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

max

{
2ζ(r0 + θ)

ερ0
, ζ

(
2η0

ε

) log ζ
log(1/σ)

, 1

}
. (43)

(iii) If µ > 0, i.e., f is strongly convex, the total number of evaluations of ∇f , ∇g, proximal operator of P and
projection onto K∗ performed in Algorithm 5 is no more than Ň , respectively, where

Ň = 1 + (M + 1)Ĉ1 +
(

1 + (M + 1)Ĉ1

)⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

+ Ĉ2

√
ρ0ζ

µ
max

{√
2ζ(r0 + θ)

ερ0
,
√
ζ

(
2η0

ε

) log ζ
2 log(1/σ)

, 1

}

+ Ĉ3

√
ρ0ζ

µ

⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

max

{√
2ζ(r0 + θ)

ερ0
,
√
ζ

(
2η0

ε

) log ζ
2 log(1/σ)

, 1

}
.

(44)

Remark 8. Since 1 < ζ < 1/σ, it can be seen from Theorem 5 that Algorithm 5 enjoys an operation complexity
of O(ε−1 log ε−1) and O(ε−1/2 log ε−1) for finding an ε-KKT solution of problems (2) and (29) when f is convex
and strongly convex on dom(P ), respectively.
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4 Numerical results

In this section we conduct some preliminary experiments to test the performance of our proposed method
(Algorithm 5), and compare it with a first-order proximal AL method (FPAL) [12], the forward-reflected-backward
splitting method (FRBS) [13] and the modified forward-backward splitting method (MFBS) with an Armijo-
Goldstein-type stepsize [19], respectively. All the algorithms are coded in Matlab and all the computations are
performed on a desktop with a 3.60 GHz Intel i7-12700K 12-core processor and 32 GB of RAM.

4.1 Quadratically constrained quadratic programming with box constraints

In this subsection we consider quadratically constrained quadratic programming (QCQP) with box constraints

min
1

2
xTAx+ bTx

s.t.
1

2
xTBix+ cTi x+ di ≤ 0, i = 1, . . . ,m,

− 1 ≤ xi ≤ 1, i = 1, . . . , n,

(45)

where A,B1, . . . , Bm ∈ Rn×n are positive semidefinite matrices, b, c1, . . . , cm ∈ Rn, and d1, . . . , dm ∈ R.
For each dimension n, we set m = d0.05ne and randomly generate 10 instances of problem (45). In particular,

we first generate x∗ ∈ [−1, 1]n whose entries are first independently chosen from the standard normal distribution
and then projected to [−1, 1], and λ∗ ∈ Rm+ whose entries are first independently chosen from the normal
distribution with mean 1 and standard deviation 1 and then projected to R+. We then randomly generate an
orthogonal matrix U by performing U = orth(randn(n)), an n × n diagonal matrix D whose diagonal entries
are first independently chosen from the normal distribution with mean 0 and standard deviation 100 and then
projected to R+, and set A = UDUT . Also, we randomly generate an orthogonal matrix Ũ by performing
Ũ = orth(randn(n)), an n× n diagonal matrices D̃ whose diagonal entries are first independently chosen from
the normal distribution with mean 0 and standard deviation 0.01 and then projected to R+. We set B1 = ŨD̃ŨT ,
and generate Bi, i = 2, . . . ,m in a similar vein. In addition, we generate ci, i = 1, . . . ,m independently according
the normal distribution with mean 0 and standard deviation 0.01. We finally choose b and di, i = 1, . . . ,m so
that the KKT conditions of (45) are satisfied at (x∗, λ∗), namely (x∗, λ∗) is a KKT point of (45).

Notice that (45) is a special case of (2) with f(x) = xTAx/2 + bTx, P (x) = I[−1,1]n(x), gi(x) = xTBix/2 +

cTi x+ di, i = 1, . . . ,m, and K = Rm+ , where I[−1,1]n(·) is the indicator function of [−1, 1]n. Moreover, f and P
are convex, g is K-convex, dom(P ) is compact, and ∇f and ∇g are (globally) Lipschitz continuous on dom(P ).
Consequently, (45) can be suitably solved by Algorithm 5 and FPAL [12]. It shall be mentioned that FPAL [12] is
only applicable to (2) with dom(P ) being compact. Our aim is to find a 10−2-KKT solution of (45) by Algorithm
5 and FPAL, and compare their performance. Due to this, we terminate them once a 10−2-KKT solution is
found. Besides, for both methods, we choose zero vector as the initial point and set their parameters as follows.

• (ε,M, δ, ρ0, α0, η0, ζ, σ) = (10−2, 500, 0.9, 10, 1, 0.1, 2, 0.4) for Algorithm 5;

• ε = 10−2, ρk = ρ0ζ
k, ηk = η0σ

k with (ρ0, η0, ζ, σ) = (10, 0.1, 2, 0.4) for FPAL [12].

The computational results of Algorithm 5 and FPAL for the instances generated above are presented in Table
1. In detail, the value of n is listed in the first column. For each n, the average number of gradient evaluations
and the average CPU time (in seconds) of Algorithm 5 and FPAL over 10 random instances are given in the rest
of the columns. One can observe that our method, namely Algorithm 5, significantly outperforms FPAL in terms
of average number of gradient evaluations and average CPU time. This phenomenon is not surprising because
Algorithm 5 uses a local Lipschitz constant of the gradient of the smooth component of the AL functions, while
FPAL uses its global Lipschitz constant that can be excessively conservative.
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Gradient evaluations CPU time (seconds)
n Algorithm 5 FPAL Algorithm 5 FPAL

100 4.97× 103 3.96× 103 0.20 0.21
200 4.57× 103 5.37× 103 6.35 12.07
300 4.47× 103 6.23× 103 12.53 27.88
400 4.18× 103 8.00× 103 33.12 93.04
500 4.18× 103 9.75× 103 22.65 248.28
600 4.18× 103 1.32× 104 58.65 617.72
700 4.08× 103 1.22× 104 122.52 889.71
800 4.08× 103 1.57× 104 186.23 1551.13
900 4.08× 103 1.94× 104 305.97 2737.96
1000 4.08× 103 2.30× 104 429.38 4398.44

Table 1: Numerical results for problem (45)

4.2 Quadratically constrained quadratic programming

In this subsection we consider the quadratically constrained quadratic programming (QCQP)

min
1

2
xTAx+ bTx

s.t.
1

2
xTBix+ cTi x+ di ≤ 0, i = 1, . . . ,m,

(46)

where A,B1, . . . , Bm ∈ Rn×n are positive semidefinite matrices, b, c1, . . . , cm ∈ Rn, and d1, . . . , dm ∈ R.
For each dimension n, we set m = d0.05ne and randomly generate 10 instances of problem (46). In particular,

we first generate x∗ ∈ Rn with all the entries independently chosen from the standard normal distribution, and
λ∗ ∈ Rm+ whose entries are first independently chosen from the normal distribution with mean 1 and standard
deviation 1 and then projected to R+. We then generate A and Bi, ci, i = 1, . . . ,m in the same manner as
described in Subsection 4.1. We finally choose b and di, i = 1, . . . ,m so that the KKT conditions of (46) are
satisfied at (x∗, λ∗), namely (x∗, λ∗) is a KKT point of (46).

Notice that (46) is a special case of (2) with f(x) = xTAx/2+bTx, P (x) = 0, gi(x) = xTBix/2+cTi x+di, i =
1, . . . ,m, and K = Rm+ . Clearly, f and P are convex, g is K-convex, ∇f and ∇g are Lipschitz continuous, while
dom(P ) = Rn is unbounded. As a result, (46) can be suitably solved by Algorithm 5 but not FPAL [12], since
the latter method is only applicable to (2) with dom(P ) being compact. On the other hand, it is not hard to
observe that problem (46) and its dual can be solved as the monotone inclusion problem

0 ∈ F (x, λ) +B(x, λ), (47)

where

F (x, λ) =

(
∇f(x) +∇g(x)λ

−g(x)

)
, B(x, λ) =

(
0

NRm+ (λ)

)
.

One can also observe that F is monotone and locally Lipschitz continuous on cl(domB) and B is maximal
monotone. As a result, problem (47) and hence (46) can be suitably solved by FRBS [13] and MFBS [19]. Our
aim is to find a 10−2-KKT solution of (46) by Algorithm 5, FRBS and MFBS, and compare their performance.
Due to this, we terminate them once a 10−2-KKT solution is found. In addition, for all the methods, we choose
zero vector as the initial point and set their parameters as follows.

• (ε,M, δ, ρ0, α0, η0, ζ, σ) = (10−2, 500, 0.9, 10, 1, 0.1, 2, 0.4) for Algorithm 5;

• (λ0, δ, σ) = (0.1, 0.5, 0.9) for FRBS [13];

• (σ, θ, β) = (0.1, 0.5, 0.9) for MFBS [19].

The computational results of Algorithm 5, FRBS and MFBS for the instances generated above are presented
in Table 2. In detail, the value of n is listed in the first column. For each n, the average number of gradient
evaluations and the average CPU time (in seconds) for these methods over 10 random instances are given in the
rest of the columns. One can observe that our method, namely Algorithm 5, significantly outperforms the other
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two methods in terms of average number of gradient evaluations and average CPU time. This phenomenon may
not be surprising because our method enjoys a nearly optimal operation complexity while the other two methods
lack complexity guarantees.

Gradient evaluations CPU time (seconds)
n Algorithm 5 FRBS MFBS Algorithm 5 FRBS MFBS

100 5.02× 103 1.89× 105 1.62× 105 0.17 1.80 1.40
200 5.01× 103 1.38× 105 1.36× 105 7.16 80.49 77.47
300 4.68× 103 1.11× 105 1.02× 105 12.10 147.19 132.95
400 4.28× 103 9.76× 104 8.33× 104 32.52 387.91 323.89
500 4.08× 103 7.12× 104 6.16× 104 23.18 147.25 125.38
600 4.18× 103 7.37× 104 6.07× 104 53.51 427.64 346.31
700 4.08× 103 6.59× 104 5.33× 104 101.14 637.33 518.73
800 4.08× 103 5.69× 104 4.72× 104 152.60 782.77 629.80
900 4.09× 103 5.46× 104 4.54× 104 236.99 1359.02 1138.14
1000 4.08× 103 4.63× 104 3.92× 104 384.96 1854.11 1568.45

Table 2: Numerical results for problem (46)

5 Proof of the main results

In this section we provide a proof of our main results presented in Sections 2 and 3, which are particularly
Theorems 1-5.

5.1 Proof of the main results in Subsection 2.1

In this subsection we first establish several technical lemmas and then use them to prove Theorems 1 and 2.

Lemma 2. Suppose that αt, βt and γt are generated by Algorithm 1 for some t ≥ 1. Then the following statements
hold.

(i)
√
µγt ≤ αt ≤ 1 and α2

t γ
−1
t ≤ α2

t−1γ
−1
t−1.

(ii) βt = µγtα
−1
t ∈ [0, 1].

Proof. (i) We first prove by induction that
√
µγi ≤ αi ≤ 1 for all 1 ≤ i ≤ t. Indeed, notice from Algorithm 1 that√

µγ0 ≤ α0 ≤ 1. Suppose that
√
µγi−1 ≤ αi−1 ≤ 1 for some 1 ≤ i < t. By this, (7), and αi ∈ (0, 1], one has

γi−1α
2
i = (1− αi)α2

i−1γi + µαiγiγi−1 ≥ (1− αi)µγi−1γi + µαiγiγi−1 = µγiγi−1,

which together with γi−1 > 0 yields
√
µγi ≤ αi ≤ 1. Hence, the induction is completed and

√
µγt ≤ αt ≤ 1 holds

as desired.
We next show that α2

t γ
−1
t ≤ α2

t−1γ
−1
t−1. Indeed, by

√
µγt−1 ≤ αt−1, γt−1, γt > 0, and (7), one has

γt−1α
2
t = (1− αt)α2

t−1γt + µαtγtγt−1 ≤ (1− αt)α2
t−1γt + αtγtα

2
t−1 = γtα

2
t−1,

which implies that the conclusion holds.
(ii) Notice from Algorithm 1 that βt = µγtα

−1
t . By this and statement (i), one has

0 ≤ βt = µγtα
−1
t ≤

√
µγt ≤ 1.

Lemma 3. Suppose that xt+1, yt and zt+1 are generated by Algorithm 1 for some t ≥ 1. Then for all x ∈ dom(P )
and P ′(zt+1) ∈ ∂P (zt+1), we have

γt〈P ′(zt+1), zt+1−x〉 ≤ γt〈∇f(yt), x−zt+1〉+ 1

2
αtβt‖x−yt‖2 +

1

2
αt(1−βt)‖x−zt‖2−

1

2
αt‖x−zt+1‖2 +Rt, (48)

where

Rt =
1

2
µγt(α

−1
t − 1)‖xt − yt‖2 − 1

2αt
‖xt+1 − yt‖2. (49)
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Proof. By the optimality condition of (5), one has

〈γt∇f(yt) + γtP
′(zt+1) + αt(z

t+1 − βtyt − (1− βt)zt), x− zt+1〉 ≥ 0

for all x ∈ dom(P ) and P ′(zt+1) ∈ ∂P (zt+1). It follows from this relation that

γt〈P ′(zt+1), zt+1 − x〉 ≤ γt〈∇f(yt), x− zt+1〉+ αt〈zt+1 − βtyt − (1− βt)zt, x− zt+1〉
= γt〈∇f(yt), x− zt+1〉+ αtβt〈zt+1 − yt, x− zt+1〉+ αt(1− βt)〈zt+1 − zt, x− zt+1〉

= γt〈∇f(yt), x− zt+1〉+
1

2
αtβt

(
‖x− yt‖2 − ‖x− zt+1‖2 − ‖yt − zt+1‖2

)
+

1

2
αt(1− βt)

(
‖x− zt‖2 − ‖x− zt+1‖2 − ‖zt − zt+1‖2

)
= γt〈∇f(yt), x− zt+1〉+

1

2
αtβt‖x− yt‖2 +

1

2
αt(1− βt)‖x− zt‖2

− 1

2
αt‖x− zt+1‖2 +Qt, (50)

where

Qt = −1

2
αtβt‖yt − zt+1‖2 − 1

2
αt(1− βt)‖zt − zt+1‖2. (51)

We next show that Qt ≤ Rt. Indeed, it follows from (4) that

xt − yt = αt(1− αt)−1(1− βt)(yt − zt), (52)

which together with (6) implies that

xt+1 − yt = (1− αt)xt + αtz
t+1 − yt = (1− αt)(xt − yt) + αtz

t+1 − αtyt

(52)
= αt(1− βt)(yt − zt) + αtz

t+1 − αtyt = αt
(
zt+1 − βtyt − (1− βt)zt

)
. (53)

Using this relation, βt ∈ [0, 1], and the convexity of ‖ · ‖2, we obtain

α−2
t ‖xt+1 − yt‖2 (53)

= ‖zt+1 − βtyt − (1− βt)zt‖2 ≤ βt‖zt+1 − yt‖2 + (1− βt)‖zt+1 − zt‖2.

By this, (49), (51), and αt ∈ (0, 1], one has

2α−1
t (Qt −Rt) = − βt‖yt − zt+1‖2 − (1− βt)‖zt − zt+1‖2 + α−2

t ‖xt+1 − yt‖2 − µγtα−2
t (1− αt)‖xt − yt‖2

≤ − βt‖yt − zt+1‖2 − (1− βt)‖zt − zt+1‖2 + α−2
t ‖xt+1 − yt‖2 ≤ 0,

which along with αt > 0 implies that Qt ≤ Rt.
The conclusion of this Lemma directly follows from (50) and Qt ≤ Rt.

Lemma 4. Suppose that xt+1, yt and zt+1 are generated by Algorithm 1 for some t ≥ 1. Then for any
x ∈ dom(P ), we have

F (xt+1)− F (x) +
α2
t

2γt
‖x− zt+1‖2 ≤

t∏
i=1

(1− αi)
(
F (x1)− F (x) +

α2
0

2γ0
‖x− x1‖2

)
. (54)

Proof. By (6), (48), and the convexity of P , one has that for all P ′(zt+1) ∈ ∂P (zt+1),

γtα
−1
t P (xt+1) ≤ γtα

−1
t

(
(1− αt)P (xt) + αtP (zt+1)

)
= γt(α

−1
t − 1)P (xt) + γtP (zt+1)

≤ γt(α
−1
t − 1)P (xt) + γtP (x) + γt〈P ′(zt+1), zt+1 − x〉

(48)

≤ γt(α
−1
t − 1)P (xt) + γtP (x) + γt〈∇f(yt), x− zt+1〉

+
1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2 +

1

2
αtβt‖x− yt‖2 +Rt. (55)
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By (3), (6), αt ∈ (0, 1], and γt > 0, one has that for all x ∈ dom(P ),

γtα
−1
t f(yt) + γtα

−1
t 〈∇f(yt), xt+1 − yt〉+ γt〈∇f(yt), x− zt+1〉

(6)
= γtα

−1
t f(yt) + γtα

−1
t 〈∇f(yt), (1− αt)xt + αtz

t+1 − yt〉+ γt〈∇f(yt), x− zt+1〉
= γtα

−1
t f(yt) + γt(α

−1
t − 1)〈∇f(yt), xt − yt〉+ γt〈∇f(yt), x− yt〉

= γt(α
−1
t − 1)

(
f(yt) + 〈∇f(yt), xt − yt〉

)
+ γt

(
f(yt) + 〈∇f(yt), x− yt〉

)
(3)

≤ γt(α
−1
t − 1)

(
f(xt)− 1

2
µ‖xt − yt‖2

)
+ γt

(
f(x)− 1

2
µ‖x− yt‖2

)
= γt(α

−1
t − 1)f(xt) + γtf(x)− 1

2
µγt(α

−1
t − 1)‖xt − yt‖2 − 1

2
µγt‖x− yt‖2. (56)

Using (8), (55) and (56), we have

γtα
−1
t F (xt+1)

(8)

≤ γtα
−1
t f(yt) + γtα

−1
t 〈∇f(yt), xt+1 − yt〉+

1

2αt
‖xt+1 − yt‖2 + γtα

−1
t P (xt+1)

(55)

≤ γtα
−1
t f(yt) + γtα

−1
t 〈∇f(yt), xt+1 − yt〉+ γt〈∇f(yt), x− zt+1〉+

1

2αt
‖xt+1 − yt‖2

+ γt(α
−1
t − 1)P (xt) + γtP (x) +

1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2

+
1

2
αtβt‖x− yt‖2 +Rt

(56)

≤ γt(α
−1
t − 1)F (xt) + γtF (x) +

1

2
(αtβt − µγt)‖x− yt‖2 −

1

2
µγt(α

−1
t − 1)‖xt − yt‖2

+
1

2αt
‖xt+1 − yt‖2 +

1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2 +Rt

= γt(α
−1
t − 1)F (xt) + γtF (x) +

1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2, (57)

where the equality follows from (49) and βt = µγtα
−1
t . In addition, it follows from (7) and βt = µγtα

−1
t that

γt−1α
2
t (1− βt) = γt−1α

2
t − γt−1α

2
tβt = γt−1α

2
t − µαtγtγt−1

(7)
= (1− αt)α2

t−1γt. (58)

In view of (57) and (58), one has

F (xt+1)− F (x) +
α2
t

2γt
‖x− zt+1‖2

(57)

≤ (1− αt)
(
F (xt)− F (x)

)
+
α2
t (1− βt)

2γt
‖x− zt‖2

(58)
= (1− αt)

(
F (xt)− F (x) +

α2
t−1

2γt−1
‖x− zt‖2

)
.

The conclusion of this lemma immediately follows from the above inequality and z1 = x1.

Suppose that xt and zt are generated by Algorithm 1 for some t ≥ 1. For any 0 < γ ≤ γ0, we define

yt(γ) =
(
(1− α(γ))xt + α(γ)(1− β(γ))zt

)
/ (1− α(γ)β(γ)) , (59)

zt+1(γ) = arg min
x

{
γ〈∇f(yt(γ)), x〉+ γP (x) +

α(γ)

2
‖x− β(γ)yt(γ)− (1− β(γ))zt‖2

}
, (60)

xt+1(γ) = (1− α(γ))xt + α(γ)zt+1(γ), (61)

where β(γ) = µγα(γ)−1 and α(γ) ∈ (0, 1] satisfies

γt−1α(γ)2 = (1− α(γ))α2
t−1γ + µγγt−1α(γ). (62)

Lemma 5. Let S and Ŝ be defined in (9) and (10). Suppose that xt, zt ∈ S, and yt(γ) and xt+1(γ) are defined
in (59) and (61) for some t ≥ 1. Then yt(γ) ∈ S and xt+1(γ) ∈ Ŝ for all 0 < γ ≤ γ0.
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Proof. Fix any 0 < γ ≤ γ0. By the optimality condition of problems (1) and (60), one has

〈γ∇f(yt(γ)) + γP ′(zt+1(γ)) + α(γ)(zt+1(γ)− β(γ)yt(γ)− (1− β(γ))zt), x∗ − zt+1(γ)〉 ≥ 0,

〈γ∇f(x∗) + γP ′(x∗), zt+1(γ)− x∗〉 ≥ 0,

where P ′(zt+1(γ)) ∈ ∂P (zt+1(γ)) and P ′(x∗) ∈ ∂P (x∗). Letting w = β(γ)yt(γ) + (1 − β(γ))zt and using the
above two inequalities and the convexity of P , we obtain

〈α(γ)(zt+1(γ)− w) + γ(∇f(yt(γ))−∇f(x∗)), x∗ − zt+1(γ)〉 ≥ γ〈P ′(zt+1(γ))− P ′(x∗), zt+1(γ)− x∗〉 ≥ 0,

which yields

α(γ)‖zt+1(γ)− x∗‖2 ≤ 〈α(γ)(x∗ − w) + γ(∇f(yt(γ))−∇f(x∗)), x∗ − zt+1(γ)〉
≤ ‖α(γ)(x∗ − w) + γ(∇f(yt(γ))−∇f(x∗))‖‖zt+1(γ)− x∗‖. (63)

In addition, recall from Lemma 2 that
√
µγt−1 ≤ αt−1 ≤ 1. By this, α(γ) ∈ (0, 1], (62), and a similar argument

as in the proof of Lemma 2(ii), one can see that β(γ) ∈ [0, 1]. It then follows from this, (59), the expression of w,
and xt, zt ∈ S that yt(γ), w ∈ S. By these, α(γ) > 0, (9), (63), and Lemma 1, one has

α(γ)‖zt+1(γ)− x∗‖
(63)

≤ ‖α(γ)(w − x∗) + γ(∇f(yt(γ))−∇f(x∗))‖ ≤ α(γ)‖w − x∗‖+ γ‖∇f(yt(γ))−∇f(x∗)‖

≤ α(γ)‖w − x∗‖+ γLS‖yt(γ)− x∗‖
(9)

≤ (α(γ) + γLS)

√
2γ0r0

α0
.

Using this, (9), (61), α(γ) ∈ (0, 1], xt ∈ S, and γ ≤ γ0, we obtain that

‖xt+1(γ)− x∗‖
(61)

≤ (1− α(γ))‖xt − x∗‖+ α(γ)‖zt+1(γ)− x∗‖
(9)

≤ (1− α(γ))

√
2γ0r0

α0
+ (α(γ) + γLS)

√
2γ0r0

α0

≤ (1 + γ0LS)

√
2γ0r0

α0
.

It then follows from the last relation and (10) that xt+1(γ) ∈ Ŝ.

For the convenience of our subsequent analysis, we define

λ0 = 1, λt =

t∏
i=1

(1− αi). (64)

Lemma 6. Let S and N be defined in (9) and (11). Suppose that xt, zt ∈ S for some t ≥ 1. Then xt+1, yt and
zt+1 are successfully generated by Algorithm 1 at iteration t with nt ≤ N , and moreover, xt+1, yt, zt+1 ∈ S.

Proof. Let γ = γ0δ
N and yt(γ) and xt+1(γ) be defined in (59) and (61). By δ ∈ (0, 1) and (11), one can observe

that 0 < γ ≤ γ0 and γ ≤ L−1

Ŝ
. Using these, xt, zt ∈ S, and Lemma 5, we see that xt+1(γ) ∈ Ŝ and yt(γ) ∈ S ⊆ Ŝ,

where Ŝ is defined in (10). It then follows from γ ≤ L−1

Ŝ
and Lemma 1(ii) that

2γ
(
f(xt+1(γ))− f(yt(γ))− 〈∇f(yt(γ)), xt+1(γ)− yt(γ)〉

)
≤ γLŜ‖x

t+1(γ)− yt(γ)‖2 ≤ ‖xt+1(γ)− yt(γ)‖2.

This together with the definition of nt in Algorithm 1 implies that nt ≤ N . It then follows that xt+1, yt and zt+1

are successfully generated by Algorithm 1.
Since xt, zt ∈ S and yt = yt(γt) for some 0 < γt ≤ γ0, it follows from Lemma 5 that yt ∈ S. We next show

that xt+1, zt+1 ∈ S. Indeed, by (7) and (64), one has

λt
(64)
= (1− αt)λt−1

(7)
=
γt−1α

2
t − µαtγtγt−1

α2
t−1γt

λt−1 ≤
γt−1α

2
t

α2
t−1γt

λt−1,
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which along with λ0 = 1 implies that γtλt/α
2
t ≤ γ0/α

2
0. Using this, (54) and (64), we obtain that

‖zt+1 − x∗‖2 ≤ 2γt
α2
t

(
F (xt+1)− F (x∗) +

α2
t

2γt
‖zt+1 − x∗‖2

)
≤ 2γtλt

α2
t

(
F (x1)− F (x∗) +

α2
0

2γ0
‖z1 − x∗‖2

)
≤ 2γ0

α2
0

(
F (x1)− F (x∗) +

α2
0

2γ0
‖z1 − x∗‖2

)
,

which together with (9) implies that zt+1 ∈ S. It then follows from this and (6) that xt+1 ∈ S.

We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1. We prove this theorem by induction. Indeed, notice from Algorithm 1 that z1 = x1 ∈ S.
It then follows from Lemma 6 that x2, y1 and z2 are successfully generated with n1 ≤ N and x2, y1, z2 ∈ S.
Now, suppose that xt, yt−1 and zt are already generated with nt−1 ≤ N and xt, yt−1, zt ∈ S. It then follows
from Lemma 6 that xt+1, yt and zt+1 are successfully generated with nt ≤ N and xt+1, yt, zt+1 ∈ S. Hence, the
induction is complete and the conclusion of this theorem holds.

Proof of Theorem 2. Observe from (64) that λi = (1− αi)λi−1 < λi−1 for all i ≥ 1. In addition, recall from
the proof of Lemma 6 that γiλi/α

2
i ≤ γ0/α

2
0 for all i ≥ 1. By these relations, one has

1√
λi
− 1√

λi−1

=
λi−1 − λi√

λi−1λi(
√
λi−1 +

√
λi)
≥ λi−1 − λi

2λi−1

√
λi

=
αi

2
√
λi
≥ 1

2
α0

√
γi/γ0 ∀i ≥ 1.

Summing up the above inequalities for i = 1, 2, . . . , t and using λ0 = 1, we obtain

1√
λt
− 1 ≥ 1

2
α0

t∑
i=1

√
γi/γ0 ⇒ λt ≤ 4

(
2 + α0

t∑
i=1

√
γi/γ0

)−2

. (65)

Also, observe from (64) and Lemma 2(i) that

λt =
t∏
i=1

(1− αi) ≤
t∏
i=1

(1−√µγi) . (66)

In addition, recall from Theorem 1 that ni ≤ N , which together with (11) implies that γi = γ0δ
ni ≥ min{γ0, δ/LŜ}

for all i ≥ 1. By this, (65) and (66), one has

λt ≤ min


(

1−
√
µmin

{
γ0, δL

−1

Ŝ

} )t
, 4

(
2 + tα0

√
min

{
1, δγ−1

0 L−1

Ŝ

} )−2
 ∀t ≥ 1.

The conclusion of Theorem 2 then directly follows from this relation, (64) and (54) with x = x∗.

5.2 Proof of the main results in Subsection 2.2

In this subsection we first establish two technical lemmas and then use them to prove Theorem 3.

Lemma 7. Let γ0, δ be given in Algorithm 2 and N be defined in (11). Suppose that (v, γ0, δ) is the input
for Algorithm 3 for any v ∈ S. Then (ṽ, γ̃) is successfully generated by Algorithm 3 with ñ ≤ N , ṽ ∈ Ŝ and
γ̃ ≥ min{γ0, δ/LŜ}.

Proof. For any 0 < γ ≤ γ0, let

ṽ(γ) = arg min
x

{
γ〈∇f(v), x− v〉+ γP (x) +

1

2
‖x− v‖2

}
. (67)

By the optimality condition of (1) and (67) and a similar argument as for (63), one has

‖ṽ(γ)− x∗‖ ≤ ‖v − x∗ − γ(∇f(v)−∇f(x∗))‖.
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Using this, v ∈ S, (9), and Lemma 1(i), we obtain

‖ṽ(γ)− x∗‖ ≤ ‖v − x∗‖+ γLS‖v − x∗‖ ≤ (1 + γ0LS)

√
2γ0r0

α0
∀0 < γ ≤ γ0.

This along with the definition of Ŝ in (10) implies that ṽ(γ) ∈ Ŝ for all 0 < γ ≤ γ0. Now, let γ = γ0δ
N . By

δ ∈ (0, 1) and (11), one can observe that 0 < γ ≤ γ0 and γ ≤ L−1

Ŝ
. It then follows that ṽ(γ) ∈ Ŝ. By these,

v ∈ S ⊆ Ŝ and Lemma 1(ii), one has

2γ(f(ṽ(γ))− f(v)− 〈∇f(v), ṽ(γ)− v〉) ≤ γLŜ‖ṽ(γ)− v‖2 ≤ ‖ṽ(γ)− v‖2.

These together with (11) and the definition of ñ in Algorithm 3 implies that (ṽ, γ̃) is successfully generated by
Algorithm 3 with ñ ≤ N , and moreover,

γ0 ≥ γ̃ = γ0δ
ñ ≥ γ0δ

N ≥ min{γ0, δ/LŜ}, ṽ = ṽ(γ̃) ∈ Ŝ.

Lemma 8. Suppose that xt+1 and (x̃t+1, γ̃t+1) are generated in Algorithm 2 for some t ≥ 1. Then we have

dist(0, ∂F (x̃t+1)) ≤ ‖γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1)‖

≤
(√

2 max{γ−1
0 , LŜδ

−1}+
√

2γ0LŜ

)√
F (xt+1)− F (x∗), (68)

where LŜ is given in Lemma 1, and γ0 and δ are the input parameters of Algorithm 1.

Proof. Notice that (x̃t+1, γ̃t+1) is the output of Algorithm 3 with (xt+1, γ0, δ) as the input. By Lemma 7, one
has that x̃t+1 ∈ Ŝ and γ0 ≥ γ̃t+1 ≥ min{γ0, δ/LŜ}. Also, it follows from (14) and (15) with v = xt+1, ṽ = x̃t+1

and γ̃ = γ̃t+1 that

x̃t+1 = arg min
x

{
γ̃t+1〈∇f(xt+1), x〉+ γ̃t+1P (x) +

1

2
‖x− xt+1‖2

}
, (69)

2γ̃t+1(f(x̃t+1)− f(xt+1)− 〈∇f(xt+1), x̃t+1 − xt+1〉) ≤ ‖x̃t+1 − xt+1‖2. (70)

By the optimality condition of (69), it can be easily shown that

γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1) ∈ ∂F (x̃t+1), (71)

γ̃t+1〈∇f(xt+1), x̃t+1〉+ γ̃t+1P (x̃t+1) ≤ γ̃t+1〈∇f(xt+1), xt+1〉+ γ̃t+1P (xt+1)− ‖x̃t+1 − xt+1‖2. (72)

By (70) and (72), one has

γ̃t+1F (x̃t+1)
(70)

≤ γ̃t+1P (x̃t+1) + γ̃t+1f(xt+1) + γ̃t+1〈∇f(xt+1), x̃t+1 − xt+1〉+
1

2
‖x̃t+1 − xt+1‖2

(72)

≤ γ̃t+1F (xt+1)− 1

2
‖x̃t+1 − xt+1‖2,

which yields ‖x̃t+1 − xt+1‖ ≤
√

2γ̃t+1(F (xt+1)− F (x̃t+1)). This together with (71), x̃t+1 ∈ Ŝ, γ0 ≥ γ̃t+1 ≥
min{γ0, δ/LŜ}, and Lemma 1(ii) implies

dist(0, ∂F (x̃t+1)) ≤ ‖γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1)‖ ≤ (γ̃−1

t+1 + LŜ)‖x̃t+1 − xt+1‖

≤
(√

2γ̃−1
t+1 +

√
2γ̃t+1LŜ

)√
F (xt+1)− F (x̃t+1)

≤
(√

2 max{γ−1
0 , LŜδ

−1}+
√

2γ0LŜ

)√
F (xt+1)− F (x∗).

We are now ready to prove Theorem 3.
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Proof of Theorem 3. Suppose for contradiction that Algorithm 2 does not terminate within T iterations. It
then follows that xt+1 and x̃t+1 must be generated in Algorithm 2 for some T −M < t ≤ T with mod(t,M) = 0.
In addition, observe that (12) also holds for Algorithm 2. By t > T −M , (12), (16) and (68), one has

‖γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1)‖

(68)

≤
(√

2 max{γ−1
0 , LŜδ

−1}+
√

2γ0LŜ

)√
F (xt+1)− F (x∗)

(12)

≤ r0

(√
2 max{γ−1

0 , LŜδ
−1}+

√
2γ0LŜ

)(
1−

√
µmin

{
γ0, δL

−1

Ŝ

})t/2

< r0

(√
2 max{γ−1

0 , LŜδ
−1}+

√
2γ0LŜ

)(
1−

√
µmin

{
γ0, δL

−1

Ŝ

} )(T−M)/2
(16)

≤ ε.

which implies that Algorithm 2 terminates at iteration t and leads to a contradiction. Consequently, Algorithm 2
must terminate at some iteration t ≤ T and output x̃t+1 that satisfies (13). By this and Lemma 8, one can see
that dist(0, ∂F (x̃t+1)) ≤ ε and hence x̃t+1 is an ε-residual solution of problem (1).

In addition, one can observe from Algorithm 2 that (i) evaluations of ∇f and proximal operator of P are
performed in the backtracking line search procedure (see step 2) and Algorithm 3 (see step 4); (ii) the total
number of iterations of Algorithm 2 is at most T ; (iii) nt backtracking trials are performed in each iteration t
and each of them requires one evaluation of ∇f and proximal operator of P ; (iv) the total number of calls of
Algorithm 3 in Algorithm 2 is at most T/M and each call requires at most N evaluations of ∇f and proximal
operator of P (see Algorithm 3 and Lemma 7), where N is given in (11). By this observation and Theorem 1,
one can see that the total number of evaluations of ∇f and proximal operator of P performed in Algorithm 2 is
no more than N̄ , respectively.

5.3 Proof of the main results in Subsection 2.3

In this subsection we first establish several technical lemmas and then use them to prove Theorem 4.
Let {xk}k∈K denote all the iterates generated by Algorithm 4, where K is a subset of consecutive nonnegative

integers starting from 0. We define K− 1 = {k − 1 : k ∈ K}. For any 0 ≤ k ∈ K− 1, let fk and Fk be defined in
(18). Also, let xk∗ be defined as

xk∗ = arg min
x
Fk(x). (73)

Recall that α0, γ0 and {ρk} are the input parameters of Algorithm 4, and L∇f and L̂∇f are the Lipschitz constant

of ∇f on Q and Q̂, respectively. Let

Lk = L∇f + ρ−1
k , L̂k = L̂∇f + ρ−1

k , (74)

r̄k =

√
Fk(xk)− Fk(xk∗) +

α2
0

2γ0
‖xk − xk∗‖2, (75)

Sk =
{
x ∈ dom(P ) : ‖x− xk∗‖ ≤ α−1

0

√
2γ0r̄k

}
, (76)

Ŝk =
{
x ∈ dom(P ) : ‖x− xk∗‖ ≤ (1 + γ0Lk)α

−1
0

√
2γ0r̄k

}
. (77)

Since L∇f and L̂∇f are respectively the Lipschitz constant of ∇f on Q and Q̂, it then follows from (18) that

∇fk is Lk- and L̂k-Lipschitz continuous on Q and Q̂, respectively. In addition, by the definition of L and L̂ in
(24) and the monotonicity of {ρk}, one has

Lk = L∇f + ρ−1
k ≤ L, L̂k = L̂∇f + ρ−1

k ≤ L̂. (78)

Lemma 9. Let xk∗ be defined in (73). Then the following statements hold.

‖xk − xk∗‖2 + ‖xk∗ − x∗‖2 ≤ ‖xk − x∗‖2 ∀0 ≤ k ∈ K− 1, (79)

‖xk − xk−1‖ ≤ ‖x0 − x∗‖+
k−1∑
i=0

ρiηi, ‖xk − x∗‖ ≤ ‖x0 − x∗‖+
k−1∑
i=0

ρiηi ∀1 ≤ k ∈ K. (80)
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Proof. One can observe that Algorithm 4 is an inexact proximal point algorithm (PPA) [18] applied to the
monotone inclusion problem 0 ∈ T (x), where T : Rn ⇒ Rn is a maximal monotone set-valued operator defined as

T (x) =

{
∂F (x) if x ∈ dom(P ),
∅ otherwise,

∀x ∈ Rn.

In addition, one can observe from (20) and (73) that dist(0, T (xk+1) + ρ−1
k (xk+1 − xk)) ≤ ηk and xk∗ =

(I + ρkT )−1(xk). It then follows from [18, Proposition 3] that

‖xk+1 − (I + ρkT )−1(xk)‖ ≤ ρkηk ∀k ∈ K− 1. (81)

By this, 0 ∈ T (x∗), xk∗ = (I + ρkT )−1(xk) and [18, Proposition 1], one can see that (79) holds. In addition, (80)
follows from (81) and [12, Lemma 3].

As a consequence of Lemma 9 and the definition of r0 and θ in (21), one has that

‖x0 − x0
∗‖ ≤ r0, ‖xk − x∗‖ ≤ r0 + θ, ‖xk − xk∗‖ ≤ r0 + θ, ‖xk − xk−1‖ ≤ r0 + θ, ∀1 ≤ k ∈ K. (82)

Lemma 10. Let r̃0 and r̄k be defined in (22) and (75). Then for all 0 ≤ k ∈ K− 1, we have

r̄2
k ≤ α2

0r̃
2
0/(2γ0). (83)

Proof. We first prove that (83) holds for k = 0, that is, r̄2
0 ≤ α2

0r̃
2
0/(2γ0). By (1), (18) and the definition of x∗,

one has

F0(x0
∗) = F (x0

∗) +
1

2ρ0
‖x0
∗ − x0‖2 ≥ F (x∗), F0(x0) = F (x0).

It then follows from these, (22), (75), and (82) that

r̄2
0

(75)
= F0(x0)− F0(x0

∗) +
α2

0

2γ0
‖x0 − x0

∗‖2 ≤ F (x0)− F (x∗) +
α2

0r
2
0

2γ0

(22)

≤ α2
0r̃

2
0

2γ0
.

We next show that (83) holds for all 1 ≤ k ∈ K − 1. It follows from (18) and (20) that there exists
P ′(xk) ∈ ∂P (xk) such that

F ′k−1(xk) = ∇f(xk) + ρ−1
k−1(xk − xk−1) + P ′(xk) ∈ ∂Fk−1(xk), ‖F ′k−1(xk)‖ ≤ ηk−1. (84)

Also, we have
∇f(xk) + P ′(xk) ∈ ∂Fk(xk),

which together with (84) yields
F ′k−1(xk)− ρ−1

k−1(xk − xk−1) ∈ ∂Fk(xk). (85)

By the convexity of F , ηk−1 ≤ η0, ρk−1 ≥ ρ0, (82) and (85), one has

Fk(x
k)− Fk(xk∗)

(85)

≤ 〈F ′k−1(xk)− ρ−1
k−1(xk − xk−1), xk − xk∗〉 ≤ (‖F ′k−1(xk)‖+ ρ−1

k−1‖x
k − xk−1‖)‖xk − xk∗‖

(82)

≤ η0(r0 + θ) + ρ−1
0 (r0 + θ)2.

This together with (75) and (82) yields

r̄2
k = Fk(x

k)− Fk(xk∗) +
α2

0

2γ0
‖xk − xk∗‖2 ≤ η0(r0 + θ) + ρ−1

0 (r0 + θ)2 +
α2

0(r0 + θ)2

2γ0
.

By this relation and the definition of r̃0 in (22), one can see that (83) holds for all 1 ≤ k ∈ K− 1.

Lemma 11. Let fk, Lk, L̂k, Sk and Ŝk be respectively defined in (18), (74), (76) and (77). Then for all
0 ≤ k ∈ K− 1, ∇fk is Lipschitz continuous on Sk and Ŝk with Lipschitz constants Lk and L̂k, respectively.
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Proof. Let Q and Q̂ be defined in (23) and (24). We first show that Sk ⊆ Q and Ŝk ⊆ Q̂ for all 0 ≤ k ∈ K− 1.
To this end, fix any 0 ≤ k ∈ K− 1. By (76), (82) and (83), one has that for all x ∈ Sk,

‖x− x∗‖ ≤ ‖x− xk∗‖+ ‖xk∗ − x∗‖
(76)

≤ α−1
0

√
2γ0r̄k + ‖xk∗ − x∗‖ ≤ r̃0 + r0 + θ,

where the last inequality follows from (82) and (83). This together with (23) implies that Sk ⊆ Q. In addition,
using (77), (78), (82) and (83), we obtain that for all x ∈ Ŝk,

‖x− x∗‖ ≤ ‖x− xk∗‖+ ‖xk∗ − x∗‖
(77)

≤ (1 + γ0Lk)α
−1
0

√
2γ0r̄k + ‖xk∗ − x∗‖

≤ (1 + γ0Lk)r̃0 + r0 + θ
(78)

≤ (1 + γ0L)r̃0 + r0 + θ,

which along with (24) implies that Ŝk ⊆ Q̂.
Recall that ∇fk is Lk- and L̂k-Lipschitz continuous on Q and Q̂, respectively. The conclusion of this lemma

then follows from this fact and the relations Sk ⊆ Q and Ŝk ⊆ Q̂ for all 0 ≤ k ∈ K− 1.

Lemma 12. Let Nk denote the number of evaluations of ∇f and proximal operator of P performed by Algorithm 2
at the kth outer iteration of Algorithm 4. Then for all 0 ≤ k ∈ K− 1, it holds that

Nk ≤ C̃1


M + 1 +

log
α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η2k


+√

ρ−1
k min

{
γ0, δL̂−1

}

, (86)

where M , δ, α0, γ0, {ρk} and {ηk} are the input parameters of Algorithm 4, and r̃0, L̂ and C̃1 are given in (22),
(24) and (25), respectively.

Proof. Notice that at the kth outer iteration of Algorithm 4, Algorithm 2 is called to find an ηk-residual solution
xk+1 of the problem minx {fk(x) + P (x)} with the inputs ε← ηk, µ← ρ−1

k and x1 = z1 ← xk. In view of (75),

(76), (77), Lemma 11 and Theorem 3, one can replace (r0, µ, ε, LŜ) in (17) by (r̄k, ρ
−1
k , ηk, L̂k) respectively and

obtain that

Nk ≤ (1 +M−1)

M +


2 log ηk

r̄k

(√
2 max{γ−1

0 ,L̂kδ−1}+
√

2γ0L̂k

)

log

(
1−

√
ρ−1
k min

{
γ0, δL̂

−1
k

})


+


(

1 +

⌈
log(γ0L̂k)

log(1/δ)

⌉
+

)

≤ (1 +M−1)


M + 1 +

log
2r̄2k

(√
max{γ−1

0 ,L̂kδ−1}+√γ0L̂k
)2

η2k


+

− log

(
1−

√
ρ−1
k min

{
γ0, δL̂

−1
k

})

(

1 +

⌈
log(γ0L̂k)

log(1/δ)

⌉
+

)

≤ (1 +M−1)


M + 1 +

log
2γ0r̄2k

(√
max{γ−2

0 ,γ−1
0 L̂kδ−1}+L̂k

)2

η2k


+√

ρ−1
k min

{
γ0, δL̂

−1
k

}

(

1 +

⌈
log(γ0L̂k)

log(1/δ)

⌉
+

)
,

where the last inequality follows from the fact that − log(1− ξ) ≥ ξ for any ξ ∈ (0, 1). By the above inequality,
(25), (78) and (83), one can see that (86) holds.

We are now ready to prove Theorem 4.
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Proof of Theorem 4. (i) Let K be defined in (27). We first show that Algorithm 4 terminates after at most
K + 1 outer iterations. Indeed, suppose for contradiction that it runs for more than K + 1 outer iterations. It
then follows that (19) does not hold for k = K. On the other hand, by (27), (82), ρK = ρ0ζ

K and ηK = η0σ
K ,

one has
1

ρK
‖xK+1 − xK‖ ≤ r0 + θ

ρ0ζK

(27)

≤ ε

2
, ηK = η0σ

K
(27)

≤ ε

2
,

and hence (19) holds for k = K, which leads to a contradiction. Hence, there exists some 0 ≤ k ≤ K such that
(19) holds and Algorithm 4 terminates and outputs xk+1. We next show that xk+1 is an ε-residual solution of
problem (1). Indeed, it follows from (18) and (19) that

dist(0, ∂F (xk+1)) ≤ dist(0, ∂F (xk+1) + ρ−1
k (xk+1 − xk)) + ρ−1

k ‖x
k+1 − xk‖

(18)
= dist(0, ∂Fk(x

k+1)) + ρ−1
k ‖x

k+1 − xk‖ ≤ ηk + ρ−1
k ‖x

k+1 − xk‖
(19)

≤ ε,

and hence the output xk+1 of Algorithm 4 is an ε-residual solution of problem (1).
(ii) Let K and Ñ be defined in (27) and (28), and let Nk denote the number of evaluations of ∇f and proximal

operator of P performed by Algorithm 2 at the kth outer iteration of Algorithm 4. By this and statement (i) of
this theorem, one can observe that the total number of evaluations of ∇f and proximal operator of P performed

in Algorithm 4 is no more than
∑|K|−2

k=0 Nk. As a result, to prove statement (ii) of this theorem, it suffices to

show that
∑|K|−2

k=0 Nk ≤ Ñ . Indeed, in view of (26), (27), (86), |K| − 2 ≤ K, ρk = ρ0ζ
k and ηk = η0σ

k, one has

|K|−2∑
k=0

Nk ≤ C̃1

K∑
k=0


M + 1 +

√
ρk

log
α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η2k


+

min
{√

γ0,
√
δL̂−1

}


= C̃1

K∑
k=0


M + 1 +

√
ρ0
√
ζ
k

−2k log σ + log
α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η20


+

min
{√

γ0,
√
δL̂−1

}


≤ C̃1


(M + 1)(K + 1) +

√
ρ0
√
ζ
K+1

−2K log σ + log
α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η20


+

(
√
ζ − 1) min

{√
γ0,
√
δL̂−1

}

≤ Ñ ,

where the first inequality follows from (86), the second inequality is due to
∑K

k=0

√
ζ
k ≤
√
ζ
K+1

/(
√
ζ − 1) and∑K

k=0 k
√
ζ
k ≤ K

√
ζ
K+1

/(
√
ζ − 1), and the last inequality follows from (26), (27) and (28).

5.4 Proof of the main results in Section 3

In this subsection we first establish several technical lemmas and then use them to prove Theorem 5.
Let {(xk, λk)}k∈K denote all the iterates generated by Algorithm 5, where K is a subset of consecutive

nonnegative integers starting from 0. We define K− 1 = {k − 1 : k ∈ K}. For any 0 ≤ k ∈ K− 1, let fk and Fk
be defined in (31). In addition, let (xk∗, λ

k
∗) be defined as

xk∗ = arg min
x
Fk(x), λk∗ = ΠK∗

(
λk + ρkg(xk∗)

)
. (87)

Recall that α0, {ρk} and {ηk} are the input parameters of Algorithm 5, Q, B, C, Q̂, B̂ and Ĉ are respectively
given in (36), (37), (38) and (39), and L∇g and L̂∇g are the Lipschitz constant of ∇g on Q and Q̂, respectively.
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Let

Lk = Cρk +B + L∇g

k−1∑
i=0

ρiηi + ρ−1
k , L̂k = Ĉρk + B̂ + L̂∇g

k−1∑
i=0

ρiηi + ρ−1
k , (88)

r̄k =

√
Fk(xk)− Fk(xk∗) +

1

2
ρkα

2
0‖xk − xk∗‖2, (89)

Sk =

{
x ∈ dom(P ) : ‖x− xk∗‖ ≤ α−1

0

√
2ρ−1

k r̄k

}
, (90)

Ŝk =

{
x ∈ dom(P ) : ‖x− xk∗‖ ≤

(
1 + Lkρ

−1
k

)
α−1

0

√
2ρ−1

k r̄k

}
. (91)

The following lemma states some properties of the function fk, whose proof is similar to that of [12, Lemma
7] and thus omitted.

Lemma 13. Let fk, Q, Q̂, Lk and L̂k be respectively defined in (31), (36), (38) and (88). Then fk is convex and
continuously differentiable on dom(P ), and moreover, ∇fk is Lipschitz continuous on Q and Q̂ with Lipschitz
constants Lk and L̂k, respectively.

The next lemma establishes some properties of (xk, λk) and (xk∗, λ
k
∗).

Lemma 14. Let (xk∗, λ
k
∗) be defined in (87). Then the following statements hold.

‖(xk, λk)− (xk∗, λ
k
∗)‖2 + ‖(xk∗, λk∗)− (x∗, λ∗)‖2 ≤ ‖(xk, λk)− (x∗, λ∗)‖2 ∀0 ≤ k ∈ K− 1, (92)

‖(xk, λk)− (xk−1, λk−1)‖ ≤ ‖(x0, λ0)− (x∗, λ∗)‖+
k−1∑
i=0

ρiηi ∀1 ≤ k ∈ K, (93)

‖(xk, λk)− (x∗, λ∗)‖ ≤ ‖(x0, λ0)− (x∗, λ∗)‖+
k−1∑
i=0

ρiηi ∀1 ≤ k ∈ K. (94)

Proof. It is well-known (e.g., see [18, 12]) that Algorithm 5 is an inexact proximal point algorithm (PPA) applied
to the monotone inclusion problem 0 ∈ Tl(x, λ), where l is the Lagrangian function of problem (2), and Tl is a
maximal monotone set-valued operator defined as

Tl : (x, λ)→ {(v, u) ∈ <n ×<m : (v,−u) ∈ ∂l(x, λ)}, ∀(x, λ) ∈ <n ×<m.

It then follows from (33), (87), and [12, Lemma 5] that

(xk∗, λ
k
∗) = Jρk(xk, λk), ‖(xk+1, λk+1)− Jρk(xk, λk)‖ ≤ ρkηk, ∀k ∈ K− 1. (95)

where Jρk = (I + ρkTl)−1. By the first relation in (95), 0 ∈ Tl(x∗, λ∗), and the maximal monotonicity of Tl, it
follows from [18, Proposition 1] that (92) holds. In addition, (93) and (94) follow from the second relation in (95)
and [12, Lemma 3].

As a consequence of Lemma 14 and the definition of r0 and θ in (34), one has that

‖x0−x0
∗‖ ≤ r0, ‖xk−x∗‖ ≤ r0 +θ, ‖λk−λ∗‖ ≤ r0 +θ, ‖xk−xk∗‖ ≤ r0 +θ, ‖xk−xk−1‖ ≤ r0 +θ ∀1 ≤ k ∈ K.

(96)

Lemma 15. Let r̃0 and r̄k be defined in (35) and (89). Then for all 0 ≤ k ∈ K− 1, we have

r̄2
k ≤ α2

0r̃
2
0ρk/2. (97)

Proof. We first prove that (97) holds for k = 0, that is, r̄2
0 ≤ α2

0r̃
2
0ρ0/2. Indeed, let l be the Lagrangian function

of problem (2). By (30), (31) and (87), one has

F0(x0
∗) = L(x0

∗, λ
0; ρ0) +

1

2ρ0
‖x0
∗ − x0‖2 ≥ L(x0

∗, λ
0; ρ0) = max

λ∈Rm

{
l(x0
∗, λ)− 1

2ρ0
‖λ− λ0‖2

}
≥ l(x∗0, λ∗)−

1

2ρ0
‖λ0 − λ∗‖2 ≥ F (x∗)− 1

2ρ0
‖λ0 − λ∗‖2,
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where the second equality follows from [12, Lemma 2]. Also, we have

F0(x0) = L(x0, λ0; ρ0) = F (x0) +
1

2ρ0

(
‖ΠK∗(λ0 + ρ0g(x0))‖2 − ‖λ0‖2

)
.

It then follows from these, (35), (89), and (96) that

r̄2
0

(89)
= F0(x0)− F0(x0

∗) +
1

2
ρ0α

2
0‖x0 − x0

∗‖2

≤ F (x0)− F (x∗) +
1

2ρ0

(
‖ΠK∗(λ0 + ρ0g(x0))‖2 + ‖λ0 − λ∗‖2 − ‖λ0‖2

)
+

1

2
ρ0α

2
0r

2
0

(35)

≤ α2
0r̃

2
0ρ0/2.

We next show that (97) holds for all 1 ≤ k ∈ K− 1. Indeed, observe that ‖λk‖ = dist(λk−1 + ρk−1g(xk),−K)
and ‖ΠK∗(λk + ρkg(xk))‖ = dist(λk + ρkg(xk),−K). Using these, ρk = ρ0ζ

k, and (96), we have

‖ΠK∗(λk + ρkg(xk))− λk‖ ≤ dist(λk + ρkg(xk),−K) + ‖λk‖ = ρkdist

(
λk

ρk
+ g(xk),−K

)
+ ‖λk‖

≤ ρkdist

(
λk

ρk
− λk−1

ρk−1
,−K

)
+ ρkdist

(
λk−1

ρk−1
+ g(xk),−K

)
+ ‖λk‖

≤ ρk

∥∥∥∥λkρk − λk−1

ρk−1

∥∥∥∥+
ρk
ρk−1

dist
(
λk−1 + ρk−1g(xk),−K

)
+ ‖λk‖

= ρk

∥∥∥∥λkρk − λk−1

ρk−1

∥∥∥∥+

(
ρk
ρk−1

+ 1

)
‖λk‖ ≤ ρk

ρk−1
‖λk−1‖+

(
ρk
ρk−1

+ 2

)
‖λk‖

≤ 2(ζ + 1)(‖λ∗‖+ r0 + θ). (98)

It follows from (31) and (33) that there exists P ′(xk) ∈ ∂P (xk) such that

F ′k−1(xk) = ∇f(xk)+∇g(xk)ΠK∗(λ
k−1+ρk−1g(xk))+ρ−1

k−1(xk−xk−1)+P ′(xk) ∈ ∂Fk−1(xk), ‖F ′k−1(xk)‖ ≤ ηk−1.
(99)

Also, we have
∇f(xk) +∇g(xk)ΠK∗(λ

k + ρkg(xk)) + P ′(xk) ∈ ∂Fk(xk),

which together with (99) yields

F ′k−1(xk)− ρ−1
k−1(xk − xk−1) +∇g(xk)

(
ΠK∗(λ

k + ρkg(xk))−ΠK∗(λ
k−1 + ρk−1g(xk))

)
∈ ∂Fk(xk). (100)

In addition, observe from (34) and (96) that xk ∈ Q̃. Also, note that Fk is convex and g is L̃g-Lipschitz continuous

on Q̃. By these, (98), (99), (100), and the monotonicity of {ρk} and {ηk}, one has

Fk(x
k)− Fk(xk∗)

(100)

≤ 〈F ′k−1(xk), xk − xk∗〉 − ρ−1
k−1〈x

k − xk−1, xk − xk∗〉
+ 〈∇g(xk)(ΠK∗(λ

k + ρkg(xk))−ΠK∗(λ
k−1 + ρk−1g(xk))), xk − xk∗〉

≤ ‖F ′k−1(xk)‖‖xk − xk∗‖+ ρ−1
k−1‖x

k − xk−1‖‖xk − xk∗‖
+ ‖∇g(xk)‖‖ΠK∗(λk + ρkg(xk))−ΠK∗(λ

k−1 + ρk−1g(xk))‖‖xk − xk∗‖
= ‖F ′k−1(xk)‖‖xk − xk∗‖+ ρ−1

k−1‖x
k − xk−1‖‖xk − xk∗‖

+ ‖∇g(xk)‖‖ΠK∗(λk + ρkg(xk))− λk‖‖xk − xk∗‖

≤ η0(r0 + θ) + ρ−1
0 (r0 + θ)2 + 2L̃g(ζ + 1)(‖λ∗‖+ r0 + θ)(r0 + θ),

where the last inequality follows from (96) and (98). Then we have

2r̄2
k

ρkα
2
0

=
2

ρkα
2
0

(
Fk(x

k)− Fk(xk∗) + ρkα
2
0‖xk − xk∗‖2

)
≤ 2

ρ0α2
0

(
Fk(x

k)− Fk(xk∗)
)

+ 2‖xk − xk∗‖2

≤ 2

ρ0α2
0

(
η0(r0 + θ) + ρ−1

0 (r0 + θ)2 + 2L̃g(ζ + 1)(‖λ∗‖+ r0 + θ)(r0 + θ)
)

+ 2(r0 + θ)2

=
2(r0 + θ)

ρ0α2
0

(
η0 + ρ−1

0 (r0 + θ) + 2L̃g(ζ + 1)(‖λ∗‖+ r0 + θ) + ρ0α
2
0(r0 + θ)

)
.

By this relation and the definition of r̃0 in (35), one can see that (97) holds for all 1 ≤ k ∈ K− 1.
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Lemma 16. Let fk, Lk, L̂k, Sk and Ŝk be respectively defined in (31), (88), (90) and (91). Then for all
0 ≤ k ∈ K− 1, ∇fk is Lipschitz continuous on Sk and Ŝk with Lipschitz constants Lk and L̂k, respectively.

Proof. Let Q and Q̂ be defined in (36) and (38). We first show that Sk ⊆ Q and Ŝk ⊆ Q̂ for all 0 ≤ k ∈ K− 1.
To this end, fix any 0 ≤ k ∈ K− 1. By (90), (96) and (97), one has that for all x ∈ Sk,

‖x− x∗‖ ≤ ‖x− xk∗‖+ ‖xk∗ − x∗‖
(90)

≤ α−1
0

√
2ρ−1

k r̄k + ‖xk∗ − x∗‖ ≤ r̃0 + r0 + θ,

where the last inequality follows from (96) and (97). This together with (36) implies that Sk ⊆ Q. In addition,
by (34), (37), (88) and ρk ≥ ρ0, one has

ρ−1
k Lk

(88)
= C + ρ−1

k B + ρ−1
k L∇g

k−1∑
i=0

ρiηi + ρ−2
k

(34)

≤ C + ρ−1
0 B + ρ−1

0 L∇gθ + ρ−2
0

(37)
= L.

Using this, (91) and (97), we obtain that for all x ∈ Ŝk,

‖x− x∗‖ ≤ ‖x− xk∗‖+ ‖xk∗ − x∗‖
(91)

≤
(
1 + Lkρ

−1
k

)
α−1

0

√
2ρ−1

k r̄k + ‖xk∗ − x∗‖ ≤ (1 + L)r̃0 + r0 + θ.

which along with (38) implies that Ŝk ⊆ Q̂.
The conclusion of this lemma then follows from Lemma 13 and the fact that Sk ⊆ Q and Ŝk ⊆ Q̂ for all

0 ≤ k ∈ K− 1.

Lemma 17. Let Nk denote the number of evaluations of ∇f , ∇g, proximal operator of P and projection onto
K∗ performed by Algorithm 2 at the kth outer iteration of Algorithm 5. Then for all 0 ≤ k ∈ K− 1, it holds that

Nk ≤ Ĉ1

M + 1 +

(
log

ρ2kα
2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η2k

)
+√

(µ+ ρ−1
k )ρ−1

k min
{

1, δL̂−1
}
 , (101)

where M , δ, α0, {ρk} and {ηk} are the input parameters of Algorithm 5, and r̃0, L̂ and Ĉ1 are given in (35),
(39) and (40), respectively.

Proof. By (34), (39), (88) and ρk ≥ ρ0, one has

ρ−1
k L̂k

(88)
= Ĉ + ρ−1

k B̂ + ρ−1
k L̂∇g

k−1∑
i=0

ρiηi + ρ−2
k

(34)

≤ Ĉ + ρ−1
0 B̂ + ρ−1

0 L̂∇gθ + ρ−2
0

(39)
= L̂. (102)

Notice that at the kth outer iteration of Algorithm 5, Algorithm 2 is called to find an ηk-residual solution xk+1 of
the problem minx {fk(x) + P (x)} with the inputs ε← ηk, γ0 ← ρ−1

k , µ← µ+ ρ−1
k and x1 = z1 ← xk. Moreover,

when applied to this problem, the proximal step (5) of Algorithm 2 requires one evaluation of ∇f , ∇g, proximal
operator of P and projection onto K∗, respectively. In view of this, (89), (90), (91), Lemma 16 and Theorem 3,
one can replace (r0, γ0, µ, ε, LŜ) in (17) by (r̄k, ρ

−1
k , µ+ ρ−1

k , ηk, L̂k) respectively and obtain that

Nk ≤ (1 +M−1)

M +


2 log ηk

r̄k

(√
2 max{ρk,L̂kδ−1}+

√
2ρ−1
k L̂k

)

log

(
1−

√
(µ+ ρ−1

k ) min
{
ρ−1
k , δL̂−1

k

})


+


(

1 +

⌈
log(ρ−1

k L̂k)

log(1/δ)

⌉
+

)

≤ (1 +M−1)


M + 1 +

log
2ρk r̄

2
k

(√
max{1,ρ−1

k L̂kδ−1}+ρ−1
k L̂k

)2

η2k


+

− log

(
1−

√
(µ+ ρ−1

k )ρ−1
k min

{
1, δρkL̂

−1
k

})

(

1 +

⌈
log(ρ−1

k L̂k)

log(1/δ)

⌉
+

)
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≤ (1 +M−1)


M + 1 +

log
2ρk r̄

2
k

(√
max{1,ρ−1

k L̂kδ−1}+ρ−1
k L̂k

)2

η2k


+√

(µ+ ρ−1
k )ρ−1

k min
{

1, δρkL̂
−1
k

}

(

1 +

⌈
log(ρ−1

k L̂k)

log(1/δ)

⌉
+

)
,

where the last inequality follows from the fact that − log(1− ξ) ≥ ξ for any ξ ∈ (0, 1). By the above inequality,
(97) and (102), one can see that (101) holds.

We are now ready to prove Theorem 5.

Proof of Theorem 5. (i) Let K be defined in (42). We first show that Algorithm 5 terminates after at most
K + 1 outer iterations. Indeed, suppose for contradiction that it runs for more than K + 1 outer iterations.
It then follows that (32) does not hold for k = K. On the other hand, by (34), (93), (42), ρK = ρ0ζ

K and
ηK = η0σ

K , one has

1

ρK
‖(xK+1, λK+1)− (xK , λK)‖ ≤ r0 + θ

ρ0ζK

(42)

≤ ε

2
, ηK = η0σ

K
(42)

≤ ε

2
,

and hence (32) holds for k = K, which leads to a contradiction. In addition, the output of Algorithm 5 is an
ε-KKT solution of problems (2) and (29) due to [12, Theorem 4].

(ii) Suppose that µ = 0, i.e., f is convex but not strongly convex on dom(P ). Let K and N̂ be defined in
(42) and (43). Also, let Nk denote the number of evaluations of ∇f , ∇g, proximal operator of P and projection
onto K∗ performed by Algorithm 2 at the kth outer iteration of Algorithm 5. In addition to these evaluations,
one projection onto K∗ is performed at step 3 of Algorithm 5 each iteration. By these and statement (i) of this
theorem, one can observe that the total number of evaluations of ∇f , ∇g, proximal operator of P and projection

onto K∗ performed in Algorithm 5 is no more than
∑|K|−2

k=0 (Nk + 1). As a result, to prove statement (ii) of this

theorem, it suffices to show that
∑|K|−2

k=0 (Nk + 1) ≤ N̂ . Indeed, in view of (41), (42), (101), |K| − 2 ≤ K, µ = 0,
ρk = ρ0ζ

k and ηk = η0σ
k, one has

|K|−2∑
k=0

(Nk + 1) ≤ K + 1 + Ĉ1

K∑
k=0

M + 1 +

ρk

(
log

ρ2kα
2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η2k

)
+

min
{

1,
√
δL̂−1

}


= K + 1 + Ĉ1

K∑
k=0

M + 1 +

ρ0ζ
k

(
2k log ζ

σ + log
ρ20α

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η20

)
+

min
{

1,
√
δL̂−1

}


≤ K + 1 + Ĉ1

(M + 1)(K + 1) +

ρ0ζ
K+1

(
2K log ζ

σ + log
ρ20α

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η20

)
+

(ζ − 1) min
{

1,
√
δL̂−1

}
 ≤ N̂ ,

where the first inequality follows from (101) and µ = 0, the second inequality is due to
∑K

k=0 ζ
k ≤ ζK+1/(ζ − 1)

and
∑K

k=0 kζ
k ≤ KζK+1/(ζ − 1), and the last equality follows from (41), (42) and (43).

(iii) Suppose that µ > 0, namely, f is strongly convex on dom(P ). Similar to the proof of statement (ii) of

this theorem, it suffices to show that
∑|K|−2

k=0 (Nk + 1) ≤ Ň . Indeed, in view of (41), (42), (101), |K| − 2 ≤ K,
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µ > 0, ρk = ρ0ζ
k and ηk = η0σ

k, one has

|K|−2∑
k=0

(Nk + 1) ≤ K + 1 + Ĉ1

K∑
k=0

M + 1 +

√
ρk
µ

(
log

ρ2kα
2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η2k

)
+

min
{

1,
√
δL̂−1

}


= K + 1 + Ĉ1

K∑
k=0

M + 1 +

√
ρ0
µ

√
ζ
k

(
2k log ζ

σ + log
ρ20α

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η20

)
+

min
{

1,
√
δL̂−1

}


≤ K + 1 + Ĉ1

(M + 1)(K + 1) +

√
ρ0
µ

√
ζ
K+1

(
2K log ζ

σ + log
ρ20α

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η20

)
+

(
√
ζ − 1) min

{
1,
√
δL̂−1

}
 ≤ Ň ,

where the first inequality follows from (101) and µ > 0, the second inequality is due to
∑K

k=0

√
ζ
k ≤
√
ζ
K+1

/(
√
ζ−

1) and
∑K

k=0 k
√
ζ
k ≤ K

√
ζ
K+1

/(
√
ζ − 1), and the last equality follows from (41), (42) and (44).

6 Concluding remarks

The development and analysis of accelerated first-order methods in this paper are based on the assumption that
the proximal subproblems associated with P can be exactly solved. Nevertheless, it is not hard to modify them
by using a suitable inexact solution of the proximal subproblems instead.

Recently, a class of problems in the form of (1) with f being relatively smooth convex was considered in
the literature (e.g., see [2, 5, 11]). Interestingly, this class consists of some problems in which ∇f is not locally
Lipschitz continuous on cl(dom(P )), for example, the problem with P being the simplex and f containing the
entropy function and being relatively smooth to the entropy function. It shall however be mentioned that
this class generally does not include the problems considered in this paper. For example, it does not contain
problem (1) with f being a convex high-degree polynomial function and P being the indicator function of the
nonnegative orthant. Yet, this problem belongs to the class considered in this paper. As future research, it would
be interesting to investigate whether the methods studied in this paper can be extended to relatively smooth
convex optimization.
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